-
1
-
-
0004110426
-
Principles of Biochemistry
-
Prentice-Hall International, Inc. New Jersey
-
[1] Horton, H.R., Moran, L.A., Ochs, R.S., Principles of Biochemistry. 1996, Prentice-Hall International, Inc., New Jersey.
-
(1996)
-
-
Horton, H.R.1
Moran, L.A.2
Ochs, R.S.3
-
2
-
-
84857501798
-
Potential applications of enzymes immobilized on/in nano materials: a review
-
[2] Ansari, S.A., Husain, Q., Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol. Adv. 30 (2012), 512–523.
-
(2012)
Biotechnol. Adv.
, vol.30
, pp. 512-523
-
-
Ansari, S.A.1
Husain, Q.2
-
3
-
-
79961235658
-
Perspective of recent progress in immobilization of enzymes
-
[3] Tran, D.N., Balkus, K.J., Perspective of recent progress in immobilization of enzymes. ACS Catal. 1 (2011), 956–968.
-
(2011)
ACS Catal.
, vol.1
, pp. 956-968
-
-
Tran, D.N.1
Balkus, K.J.2
-
4
-
-
84890796816
-
Materials-based strategies for multi-enzyme immobilization and co-localization: a Review
-
[4] Jia, F., Narasimhan, B., Mallapragada, S., Materials-based strategies for multi-enzyme immobilization and co-localization: a Review. Biotechnol. Bioeng. 2 (2014), 209–222.
-
(2014)
Biotechnol. Bioeng.
, vol.2
, pp. 209-222
-
-
Jia, F.1
Narasimhan, B.2
Mallapragada, S.3
-
5
-
-
84880092057
-
Industrial use of immobilized enzymes
-
[5] DiCosimo, R., McAuliffe, J., Pouloseb, A.J., Bohlmann, G., Industrial use of immobilized enzymes. Chem. Soc. Rev. 42 (2013), 6437–6474.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 6437-6474
-
-
DiCosimo, R.1
McAuliffe, J.2
Pouloseb, A.J.3
Bohlmann, G.4
-
6
-
-
84978938470
-
Enzyme Immobilization: an overview on nanoparticles as ımmobilization matrix
-
4:2
-
[6] Ahmad, R., Sardar, M., Enzyme Immobilization: an overview on nanoparticles as ımmobilization matrix. Biochem. Anal. Biochem., 2, 2015 4:2.
-
(2015)
Biochem. Anal. Biochem.
, vol.2
-
-
Ahmad, R.1
Sardar, M.2
-
7
-
-
33947602594
-
Improvement of enzyme activity: stability and selectivity via immobilization techniques
-
[7] Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., Improvement of enzyme activity: stability and selectivity via immobilization techniques. Enzyme Microbiol. Technol. 40 (2007), 1451–1463.
-
(2007)
Enzyme Microbiol. Technol.
, vol.40
, pp. 1451-1463
-
-
Mateo, C.1
Palomo, J.M.2
Fernandez-Lorente, G.3
Guisan, J.M.4
Fernandez-Lafuente, R.5
-
8
-
-
84938687700
-
Enhanced activity of immobilized or chemically modified enzymes
-
[8] Zhang, Y., Ge, J., Liu, Z., Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 5 (2015), 4503–4513.
-
(2015)
ACS Catal.
, vol.5
, pp. 4503-4513
-
-
Zhang, Y.1
Ge, J.2
Liu, Z.3
-
9
-
-
0004225509
-
Immobilized Biocatalysts
-
Springer-Verlag Berlin
-
[9] Hartmeier, W., Immobilized Biocatalysts. 1988, Springer-Verlag, Berlin.
-
(1988)
-
-
Hartmeier, W.1
-
11
-
-
3142763845
-
Application of chitin- and chitosan-based materials for enzyme immobilizations: a review
-
[11] Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microbiol. Technol. 2–3:2 (2004), 126––139.
-
(2004)
Enzyme Microbiol. Technol.
, vol.2-3
, Issue.2
, pp. 126-139
-
-
Krajewska, B.1
-
12
-
-
2342618848
-
Free-standing nanogold membranes as scaffolds for enzyme immobilization
-
[12] Phadtare, S., Vinod, V.P., Wadgaonkar, P.P., Rao, M., Sastry, M., Free-standing nanogold membranes as scaffolds for enzyme immobilization. Langmuir 20:9 (2004), 3717–3723.
-
(2004)
Langmuir
, vol.20
, Issue.9
, pp. 3717-3723
-
-
Phadtare, S.1
Vinod, V.P.2
Wadgaonkar, P.P.3
Rao, M.4
Sastry, M.5
-
13
-
-
84880150502
-
Enzyme immobilization: an overview on techniques and support materials
-
[13] Datta, S., Christena, L.R., Rajaram, Y.R.S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 1 (2012), 1–9.
-
(2012)
3 Biotech
, vol.1
, pp. 1-9
-
-
Datta, S.1
Christena, L.R.2
Rajaram, Y.R.S.3
-
14
-
-
84880088476
-
Enzyme immobilisation: fundamentals and application
-
[14] Hanefeld, U., Cao, L., Magner, E., Enzyme immobilisation: fundamentals and application. Chem. Soc. Rev., 42, 2013, 15.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 15
-
-
Hanefeld, U.1
Cao, L.2
Magner, E.3
-
16
-
-
27844518415
-
Nanostructures for enzyme stabilization
-
[16] Kim, J., Grate, J.W., Wang, P., Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61 (2006), 1017–1026.
-
(2006)
Chem. Eng. Sci.
, vol.61
, pp. 1017-1026
-
-
Kim, J.1
Grate, J.W.2
Wang, P.3
-
17
-
-
84880122011
-
Enzyme immobilisation in biocatalysis: why, what and how
-
[17] Sheldon, R.A., Van Pelt, S., Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42:15 (2013), 6223–6235.
-
(2013)
Chem. Soc. Rev.
, vol.42
, Issue.15
, pp. 6223-6235
-
-
Sheldon, R.A.1
Van Pelt, S.2
-
18
-
-
84933660629
-
Enzyme reactors
-
R.C. West CRC Press Boca Raton, FL
-
[18] Zaborsky, O., Enzyme reactors. West, R.C., (eds.) Immobilized Enzymes, 1973, CRC Press, Boca Raton, FL, 117–126.
-
(1973)
Immobilized Enzymes
, pp. 117-126
-
-
Zaborsky, O.1
-
20
-
-
84885740173
-
Enzymes in Industry and Medicine
-
University Press Cambridge
-
[20] Bickerstaff, G.F., Enzymes in Industry and Medicine. 1991, University Press, Cambridge.
-
(1991)
-
-
Bickerstaff, G.F.1
-
21
-
-
37749006119
-
®s): stable and recyclable biocatalysts
-
®s): stable and recyclable biocatalysts. Biochem. Soc. Trans. 35 (2007), 1583–1587.
-
(2007)
Biochem. Soc. Trans.
, vol.35
, pp. 1583-1587
-
-
Sheldon, R.A.1
-
22
-
-
33846044706
-
Characterization of functionalized nanoporous supports for protein confinement
-
[22] Lei, C., Shin, Y., Magnuson, J.K., Fryxell, G.E., Lasure, L.L., Elliott, D.C., Liu, J., Ackerman, E.J., Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology 17:22 (2006), 5531–5538.
-
(2006)
Nanotechnology
, vol.17
, Issue.22
, pp. 5531-5538
-
-
Lei, C.1
Shin, Y.2
Magnuson, J.K.3
Fryxell, G.E.4
Lasure, L.L.5
Elliott, D.C.6
Liu, J.7
Ackerman, E.J.8
-
23
-
-
0034688699
-
Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Reprinted from Biotechnology and Bioengineering, vol. XXIII, no. 12, (1981) pages 2789–2802
-
[23] Wichmann, R., Wandrey, C., Bückmann, A.F., Kula, M.R., Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Reprinted from Biotechnology and Bioengineering, vol. XXIII, no. 12, (1981) pages 2789–2802. Biotechnol. Bioeng. 20 (2000), 791–804.
-
(2000)
Biotechnol. Bioeng.
, vol.20
, pp. 791-804
-
-
Wichmann, R.1
Wandrey, C.2
Bückmann, A.F.3
Kula, M.R.4
-
24
-
-
0033179495
-
Crosslinking of enzymes for imporoved stability and performance
-
[24] Govardhan, C.P., Crosslinking of enzymes for imporoved stability and performance. Curr. Opin. Biotechnol. 10 (1999), 331–335.
-
(1999)
Curr. Opin. Biotechnol.
, vol.10
, pp. 331-335
-
-
Govardhan, C.P.1
-
25
-
-
4644232857
-
Preparation optimization, and structures of cross-linked enzyme aggregates (CLEAs)
-
[25] Schoevaart, R., Wolbers, M.W., Golubovic, M., Ottens, M., Kieboom, A.P.G., van Rantwijk, F., Van der Wielen, L.A.M., Sheldon, R.A., Preparation optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng. 6 (2004), 754–762.
-
(2004)
Biotechnol. Bioeng.
, vol.6
, pp. 754-762
-
-
Schoevaart, R.1
Wolbers, M.W.2
Golubovic, M.3
Ottens, M.4
Kieboom, A.P.G.5
van Rantwijk, F.6
Van der Wielen, L.A.M.7
Sheldon, R.A.8
-
26
-
-
84949845364
-
Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase
-
[26] Nadar, S.S., Rathod, V.K., Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme Microbiol. Technol. 83 (2016), 78–87.
-
(2016)
Enzyme Microbiol. Technol.
, vol.83
, pp. 78-87
-
-
Nadar, S.S.1
Rathod, V.K.2
-
27
-
-
33645298457
-
Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder
-
[27] Shah, S., Sharma, A., Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal. Biochem. 351:2 (2006), 207–213.
-
(2006)
Anal. Biochem.
, vol.351
, Issue.2
, pp. 207-213
-
-
Shah, S.1
Sharma, A.2
-
28
-
-
84924203077
-
A green approach to the synthesis of novel Desert rose stone-like nanobiocatalytic system with excellent enzyme activity and stability
-
Bu referans çıkartıldı
-
[28] Wang, M., Bao, W., Wang, J., Wang, K., Xu, J., Chen, H., Xia, X., A green approach to the synthesis of novel Desert rose stone-like nanobiocatalytic system with excellent enzyme activity and stability. Sci. Rep., 4, 2014, 6606 Bu referans çıkartıldı.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6606
-
-
Wang, M.1
Bao, W.2
Wang, J.3
Wang, K.4
Xu, J.5
Chen, H.6
Xia, X.7
-
29
-
-
70350257632
-
Advances in enzyme immobilisation
-
[29] Brady, D., Jordaan, J., Advances in enzyme immobilisation. Biotechnol. Lett. 31 (2009), 1639–1650.
-
(2009)
Biotechnol. Lett.
, vol.31
, pp. 1639-1650
-
-
Brady, D.1
Jordaan, J.2
-
30
-
-
84863719219
-
Protein–inorganic hybrid nanoflowers
-
[30] Ge, J., Lei, J., Zare, R.N., Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 7 (2012), 428–432.
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 428-432
-
-
Ge, J.1
Lei, J.2
Zare, R.N.3
-
31
-
-
84906252688
-
Enantioselective transesterification of (R,S)-2-pentanol catalyzed by a new flower-like nanobioreactor
-
[31] Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., Wang, Z., Enantioselective transesterification of (R,S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Adv., 4, 2014, 33998.
-
(2014)
RSC Adv.
, vol.4
, pp. 33998
-
-
Wu, Z.1
Li, X.2
Li, F.3
Yue, H.4
He, C.5
Xie, F.6
Wang, Z.7
-
32
-
-
84873821085
-
A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance
-
[32] Wang, L.B., Wang, Y.C., He, R., Zhuang, A., Wang, X., Zeng, J., Hou, J.G., A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J. Am. Chem. Soc. 135:4 (2013), 1272–1275.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.4
, pp. 1272-1275
-
-
Wang, L.B.1
Wang, Y.C.2
He, R.3
Zhuang, A.4
Wang, X.5
Zeng, J.6
Hou, J.G.7
-
33
-
-
84955460130
-
Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity
-
[33] He, G., Hu, W., Li, C.M., Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity. Colloids Surf. B 135 (2015), 613–618.
-
(2015)
Colloids Surf. B
, vol.135
, pp. 613-618
-
-
He, G.1
Hu, W.2
Li, C.M.3
-
34
-
-
84904106067
-
Facile synthesis of enzyme-Inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol
-
[34] Lin, Z., Xiao, Y., Yin, Y., Hu, W., Liu, W., Yang, H., Facile synthesis of enzyme-Inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. Appl. Mater. Interfaces 6 (2014), 10775–10782.
-
(2014)
Appl. Mater. Interfaces
, vol.6
, pp. 10775-10782
-
-
Lin, Z.1
Xiao, Y.2
Yin, Y.3
Hu, W.4
Liu, W.5
Yang, H.6
-
35
-
-
84890220459
-
Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor
-
[35] J. Sun, J., Ge, W., Liu, M., Lan, H., Zhang, P., Wang, Y., Wang, Z. Niu, Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale 6 (2014), 255–262.
-
(2014)
Nanoscale
, vol.6
, pp. 255-262
-
-
J. Sun, J.1
Ge, W.2
Liu, M.3
Lan, H.4
Zhang, P.5
Wang, Y.6
Wang, Z.N.7
-
36
-
-
85047697508
-
A 3D μPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor
-
[36] Ariza-Avidad, M., Salinas-Castillo, A., Capitan-Vallvey, L.F., A 3D μPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor. Biosens. Bioelectron. 77 (2016), 51–55.
-
(2016)
Biosens. Bioelectron.
, vol.77
, pp. 51-55
-
-
Ariza-Avidad, M.1
Salinas-Castillo, A.2
Capitan-Vallvey, L.F.3
-
37
-
-
84907855894
-
Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes
-
[37] Li, Z., Zhang, Y., Su, Y., Quyang, P., Ge, J., Liu, Z., Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes. Chem. Commun., 50, 2014, 12465.
-
(2014)
Chem. Commun.
, vol.50
, pp. 12465
-
-
Li, Z.1
Zhang, Y.2
Su, Y.3
Quyang, P.4
Ge, J.5
Liu, Z.6
-
38
-
-
84879033780
-
Rapid detection of phenol using a membrane containing laccase nanoflowers
-
[38] Zhu, L., Gong, L., Zhang, Y., Wang, R., Ge, J., Liu, Z., Zare, R.N., Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem. Asian J., 00, 2013, 0.
-
(2013)
Chem. Asian J.
-
-
Zhu, L.1
Gong, L.2
Zhang, Y.3
Wang, R.4
Ge, J.5
Liu, Z.6
Zare, R.N.7
-
39
-
-
84924347806
-
An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity
-
[39] Y. Yin, Y., Xiao, G., Lin, Q., Xiao, Z., Lin, Z. Cai, An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J. Mater. Chem. 3 (2015), 2295–2300.
-
(2015)
J. Mater. Chem.
, vol.3
, pp. 2295-2300
-
-
Y. Yin, Y.1
Xiao, G.2
Lin, Q.3
Xiao, Z.4
Lin, Z.C.5
-
40
-
-
84946935096
-
Hierarchical assembly of enzyme-inorganic composite materials with extremely high enzyme activity
-
[40] Liang, L., Fei, X., Li, Y., Tian, J., Xu, L., Wang, X., Wang, Y., Hierarchical assembly of enzyme-inorganic composite materials with extremely high enzyme activity. RSC Adv., 5, 2015, 96997.
-
(2015)
RSC Adv.
, vol.5
, pp. 96997
-
-
Liang, L.1
Fei, X.2
Li, Y.3
Tian, J.4
Xu, L.5
Wang, X.6
Wang, Y.7
-
41
-
-
84896943128
-
Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for higly efficient protein digestion
-
[41] Lin, Z., Xiao, Y., Wang, L., Yin, Y., Zheng, J., Yang, H., Chen, G., Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for higly efficient protein digestion. RSC Adv., 4, 2014, 13888.
-
(2014)
RSC Adv.
, vol.4
, pp. 13888
-
-
Lin, Z.1
Xiao, Y.2
Wang, L.3
Yin, Y.4
Zheng, J.5
Yang, H.6
Chen, G.7
-
42
-
-
84982877363
-
Nanostructures for peroxidases
-
[42] Carmona-Ribeiro, A.M., Prieto, T., Nantes, I.L., Nanostructures for peroxidases. Front. Mol. Biosci., 2, 2015, 50.
-
(2015)
Front. Mol. Biosci.
, vol.2
, pp. 50
-
-
Carmona-Ribeiro, A.M.1
Prieto, T.2
Nantes, I.L.3
-
43
-
-
84930180050
-
Self-assembled enzyme-inorganic hybrid nanoflowers and their applicaiton to enzyme purification
-
[43] Yu, Y., Fei, X., Tian, J., Xu, L., Wang, X., Wang, Y., Self-assembled enzyme-inorganic hybrid nanoflowers and their applicaiton to enzyme purification. Colloids Surf. B 130 (2015), 299–304.
-
(2015)
Colloids Surf. B
, vol.130
, pp. 299-304
-
-
Yu, Y.1
Fei, X.2
Tian, J.3
Xu, L.4
Wang, X.5
Wang, Y.6
-
44
-
-
84953638013
-
Bovine serum albumin-Cu(II) hybrid nanoflowers: an effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water hair, food and cigarette samples
-
[44] Yilmaz, E., Ocsoy, I., Ozdemir, N., Soylak, M., Bovine serum albumin-Cu(II) hybrid nanoflowers: an effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water hair, food and cigarette samples. Anal. Chim. Acta 906 (2016), 110–117.
-
(2016)
Anal. Chim. Acta
, vol.906
, pp. 110-117
-
-
Yilmaz, E.1
Ocsoy, I.2
Ozdemir, N.3
Soylak, M.4
-
45
-
-
84929388343
-
Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability
-
[45] Somturk, B., Hancer, M., Ocsoy, I., Özdemir, N., Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans. 44 (2015), 13845–13852.
-
(2015)
Dalton Trans.
, vol.44
, pp. 13845-13852
-
-
Somturk, B.1
Hancer, M.2
Ocsoy, I.3
Özdemir, N.4
-
46
-
-
84929359465
-
A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity
-
[46] Ocsoy, I., Dogru, E., Usta, S., A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity. Enzyme Microbiol. Technol. 75–76 (2015), 25–29.
-
(2015)
Enzyme Microbiol. Technol.
, vol.75-76
, pp. 25-29
-
-
Ocsoy, I.1
Dogru, E.2
Usta, S.3
-
47
-
-
84977747146
-
Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties
-
Available online 14 September 2015
-
[47] Somturk, B., Yilmaz, I., Altinkaynak, C., Karatepe, A., Özdemir, N., Ocsoy, I., Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microbiol. Technol., 2016 Available online 14 September 2015.
-
(2016)
Enzyme Microbiol. Technol.
-
-
Somturk, B.1
Yilmaz, I.2
Altinkaynak, C.3
Karatepe, A.4
Özdemir, N.5
Ocsoy, I.6
-
48
-
-
84952059563
-
Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability
-
[48] Altinkaynak, C., Yilmaz, I., Koksal, Z., Özdemir, H., Ocsoy, I., Özdemir, N., Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int. J. Biol. Macromol. 84 (2016), 402–409.
-
(2016)
Int. J. Biol. Macromol.
, vol.84
, pp. 402-409
-
-
Altinkaynak, C.1
Yilmaz, I.2
Koksal, Z.3
Özdemir, H.4
Ocsoy, I.5
Özdemir, N.6
-
49
-
-
84902649213
-
Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach
-
[49] Shi, J., Zhang, S., Wang, X., Yang, C., Jiang, Z., Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach. J. Mater. Chem. B, 2, 2014, 4289.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 4289
-
-
Shi, J.1
Zhang, S.2
Wang, X.3
Yang, C.4
Jiang, Z.5
-
50
-
-
84947443061
-
Ultrafast sonochemical synthesis of protein-inorganic nanoflowers
-
[50] Batule, B.S., Park, K.S., Kim, M.I., Park, H.G., Ultrafast sonochemical synthesis of protein-inorganic nanoflowers. Int. J. Nanomed. 10 (2015), 137–142.
-
(2015)
Int. J. Nanomed.
, vol.10
, pp. 137-142
-
-
Batule, B.S.1
Park, K.S.2
Kim, M.I.3
Park, H.G.4
-
51
-
-
84900801015
-
Fabrication of hierarchical nanostructured BSA/ZnO hybrid nanoflowers by a self-assembly process
-
[51] Zhang, T., Zhou, Y., Wang, Y., Zhang, L., Wang, H., Wu, X., Fabrication of hierarchical nanostructured BSA/ZnO hybrid nanoflowers by a self-assembly process. Mater. Lett. 128 (2014), 227–230.
-
(2014)
Mater. Lett.
, vol.128
, pp. 227-230
-
-
Zhang, T.1
Zhou, Y.2
Wang, Y.3
Zhang, L.4
Wang, H.5
Wu, X.6
-
52
-
-
84958282667
-
2 hybrid particles: preparation and application to adsorption of heavy metal ions
-
2 hybrid particles: preparation and application to adsorption of heavy metal ions. Appl. Surf. Sci. 366 (2016), 328–338.
-
(2016)
Appl. Surf. Sci.
, vol.366
, pp. 328-338
-
-
Zhang, B.1
Li, P.2
Zhang, H.3
Li, X.4
Tian, L.5
Wang, H.6
Chen, X.7
Ali, N.8
Ali, Z.9
Zhang, Q.10
-
53
-
-
84924414334
-
2@BSA nanoflowers and its application as the support nanomaterial for Pt catalyst
-
2@BSA nanoflowers and its application as the support nanomaterial for Pt catalyst. J. Power Sources 284 (2015), 170–177.
-
(2015)
J. Power Sources
, vol.284
, pp. 170-177
-
-
Zhang, Z.1
Zhang, Y.2
He, L.3
Yang, Y.4
Liu, S.5
Wang, M.6
Fang, S.7
Fu, G.8
-
54
-
-
84958257007
-
2 hybrid nanoflower and its catalytic performance as an immobilized enzyme
-
2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 291 (2016), 287–297.
-
(2016)
Chem. Eng. J.
, vol.291
, pp. 287-297
-
-
Zhang, B.1
Li, P.2
Zhang, H.3
Wang, H.4
Li, X.5
Tian, L.6
Ali, N.7
Ali, Z.8
Zhang, Q.9
-
55
-
-
84958763239
-
A new lipase–inorganic hybrid nanoflower with enhanced enzyme activity
-
[55] Ke, C., Fan, Y., Chen, Y., Xu, L., Yan, Y., A new lipase–inorganic hybrid nanoflower with enhanced enzyme activity. RSC Adv. 6 (2016), 19413–19416.
-
(2016)
RSC Adv.
, vol.6
, pp. 19413-19416
-
-
Ke, C.1
Fan, Y.2
Chen, Y.3
Xu, L.4
Yan, Y.5
-
56
-
-
84901635678
-
Organic-inorganic hybrid hierarchical aluminum phenylphosphonate microspheres
-
[56] Zhang, L., Shi, X., Liu, S., Pareek, V.K., Liu, J., Organic-inorganic hybrid hierarchical aluminum phenylphosphonate microspheres. J. Colloid Interface Sci. 427 (2014), 35–41.
-
(2014)
J. Colloid Interface Sci.
, vol.427
, pp. 35-41
-
-
Zhang, L.1
Shi, X.2
Liu, S.3
Pareek, V.K.4
Liu, J.5
-
57
-
-
84921293282
-
Protein-inorganic hybrid nanoflowers as ultrasensitive electrochemical cytosensing interfaces for evaluation od cell surface sialic acid
-
[57] Cao, H., Yang, D.P., Ye, D., Zhang, X., Fang, X., Zhang, S., Liu, B., Kong, J., Protein-inorganic hybrid nanoflowers as ultrasensitive electrochemical cytosensing interfaces for evaluation od cell surface sialic acid. Biosens. Bioelectron. 68 (2015), 329–335.
-
(2015)
Biosens. Bioelectron.
, vol.68
, pp. 329-335
-
-
Cao, H.1
Yang, D.P.2
Ye, D.3
Zhang, X.4
Fang, X.5
Zhang, S.6
Liu, B.7
Kong, J.8
-
58
-
-
84922577131
-
Manganese(II) phosphate nanoflowers as electrochemical biosensors fort he high-sensitivity detection of ractopamine
-
[58] Zhang, Z., Zhang, Y., Song, R., Wang, M., Yan, F., He, L., Feng, X., Fang, S., Zhao, J., Zhang, H., Manganese(II) phosphate nanoflowers as electrochemical biosensors fort he high-sensitivity detection of ractopamine. Sens. Actuators B 211 (2015), 310–317.
-
(2015)
Sens. Actuators B
, vol.211
, pp. 310-317
-
-
Zhang, Z.1
Zhang, Y.2
Song, R.3
Wang, M.4
Yan, F.5
He, L.6
Feng, X.7
Fang, S.8
Zhao, J.9
Zhang, H.10
-
59
-
-
84962306253
-
An improved ultrasensitive enzyme-linked immunosorbent asay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites
-
[59] Wei, T., Du, D., Zhu, M.-J., Lin, Y., Dai, Z., An improved ultrasensitive enzyme-linked immunosorbent asay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl. Mater. Interfaces 8 (2016), 6329–6335.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 6329-6335
-
-
Wei, T.1
Du, D.2
Zhu, M.-J.3
Lin, Y.4
Dai, Z.5
|