-
1
-
-
0017558676
-
The Shannon sampling theorem-Its various extensions and applications: A tutorial review
-
Nov
-
A. J. Jerri, The Shannon sampling theorem-Its various extensions and applications: A tutorial review, Proc. IEEE, vol. 65, pp. 1565-1596, Nov. 1977.
-
(1977)
Proc. IEEE
, vol.65
, pp. 1565-1596
-
-
Jerri, A.J.1
-
3
-
-
0034171723
-
Sampling-50 years after Shannon
-
Apr
-
M. Unser, Sampling-50 years after Shannon, Proc. IEEE, vol. 88, pp. 569-587, Apr. 2000.
-
(2000)
Proc. IEEE
, vol.88
, pp. 569-587
-
-
Unser, M.1
-
4
-
-
0017554734
-
Generalized sampling expansion
-
Nov
-
A. Papoulis, Generalized sampling expansion, IEEE Trans. Circuit Syst., vol. CAS-24, no. 11, pp. 652-654, Nov. 1977.
-
(1977)
IEEE Trans. Circuit Syst., Vol. CAS-24
, Issue.11
, pp. 652-654
-
-
Papoulis, A.1
-
5
-
-
0019530054
-
Multi-channel sampling of low-pass signals
-
Nov
-
J. Brown Jr., Multi-channel sampling of low-pass signals, IEEE Trans. Circuit Syst., vol. CAS-28, no. 2, pp. 101-106, Nov. 1981.
-
(1981)
IEEE Trans. Circuit Syst., Vol. CAS-28
, Issue.2
, pp. 101-106
-
-
Brown, J.1
-
6
-
-
0024018237
-
Digital spectra of nonuniformly sampled signals: Fundamentals and high-speed waveform digitizers
-
Jun
-
Y. C. Jenq, Digital spectra of nonuniformly sampled signals: Fundamentals and high-speed waveform digitizers, IEEE Trans. Instrum. Meas., vol. 37, pp. 245-251, Jun. 1988.
-
(1988)
IEEE Trans. Instrum. Meas.
, vol.37
, pp. 245-251
-
-
Jenq, Y.C.1
-
7
-
-
20544468498
-
Digital spectrum of a nonuniformly sampled two-dimensional signal and its reconstruction
-
Jun
-
Y. C. Jenq and L. Cheng, Digital spectrum of a nonuniformly sampled two-dimensional signal and its reconstruction, IEEE Trans. Instrum. Meas., vol. 54, pp. 1180-1187, Jun. 2005.
-
(2005)
IEEE Trans. Instrum. Meas.
, vol.54
, pp. 1180-1187
-
-
Jenq, Y.C.1
Cheng, L.2
-
8
-
-
0034298489
-
Filterbank reconstruction of bandlimited signals from nonuniform and generalized samples
-
Oct
-
Y. C. Eldar and A. V. Oppenheim, Filterbank reconstruction of bandlimited signals from nonuniform and generalized samples, IEEE Trans. Signal Process., vol. 48, no. 10, pp. 2864-2875, Oct. 2000.
-
(2000)
IEEE Trans. Signal Process.
, vol.48
, Issue.10
, pp. 2864-2875
-
-
Eldar, Y.C.1
Oppenheim, A.V.2
-
9
-
-
84863165944
-
Reconstruction of uniformly sampled sequence from nonuniformly sampled transient sequence using symmetric extension
-
Mar
-
S. W. Park, W. D. Hao, and C. S. Leung, Reconstruction of uniformly sampled sequence from nonuniformly sampled transient sequence using symmetric extension, IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1498-1501, Mar. 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.3
, pp. 1498-1501
-
-
Park, S.W.1
Hao, W.D.2
Leung, C.S.3
-
10
-
-
0001089426
-
Data-driven multichannel superresolution with application to video sequences
-
H. Shekarforoush and R. Chellappa, Data-driven multichannel superresolution with application to video sequences, J. Opt. Soc. Amer. A, vol. 16, pp. 481-492, 1999.
-
(1999)
J. Opt. Soc. Amer. A
, vol.16
, pp. 481-492
-
-
Shekarforoush, H.1
Chellappa, R.2
-
11
-
-
0035443388
-
Least-squares image resizing using finite differences
-
A. Munoz, T. Blu, and M. Unser, Least-squares image resizing using finite differences, IEEE Trans. Image Process., vol. 10, pp. 1365-1378, 2001.
-
(2001)
IEEE Trans. Image Process.
, vol.10
, pp. 1365-1378
-
-
Munoz, A.1
Blu, T.2
Unser, M.3
-
12
-
-
47349104605
-
Anewimage scaling algorithm based on the sampling theorem of Papoulis and application to color images
-
A. Hore,D. Ziou, and F.Deschenes, Anewimage scaling algorithm based on the sampling theorem of Papoulis and application to color images, in Proc. IEEE 4th Int. Conf. Image Graphics, 2007, pp. 39-44.
-
(2007)
Proc. IEEE 4th Int. Conf. Image Graphics
, pp. 39-44
-
-
Hored, A.1
Ziou, D.2
Deschenes, F.3
-
13
-
-
27744527082
-
Reconstruction of multidimensional bandlimited signals from nonuniform and generalized samples
-
Nov
-
A. Feuer and G. C. Goodwin, Reconstruction of multidimensional bandlimited signals from nonuniform and generalized samples, IEEE Trans. Signal Process., vol. 53, pp. 4273-4282, Nov. 2005.
-
(2005)
IEEE Trans. Signal Process.
, vol.53
, pp. 4273-4282
-
-
Feuer, A.1
Goodwin, G.C.2
-
14
-
-
33748347369
-
Multicode ultra-wideband scheme using chirp waveforms
-
Apr
-
H. Liu, Multicode ultra-wideband scheme using chirp waveforms, IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 885-891, Apr. 2006.
-
(2006)
IEEE J. Sel. Areas Commun.
, vol.24
, Issue.4
, pp. 885-891
-
-
Liu, H.1
-
15
-
-
77949662812
-
From theory to practice: Sub-Nyquist sampling of sparsewideband analog signals
-
M. Mishali and Y. C. Eldar, From theory to practice: sub-Nyquist sampling of sparsewideband analog signals, IEEE J. Sel. Top. Signal Process., vol. 4, no. 2, pp. 375-391, 2010.
-
(2010)
IEEE J. Sel. Top. Signal Process.
, vol.4
, Issue.2
, pp. 375-391
-
-
Mishali, M.1
Eldar, Y.C.2
-
16
-
-
0344007150
-
Vector sampling expansion
-
D. Seidner, M. Feder, D. Cubanski, and S. Blackstock, Vector sampling expansion, IEEE Trans. Signal. Process., vol. 48, pp. 1401-1416, 2000.
-
(2000)
IEEE Trans. Signal. Process.
, vol.48
, pp. 1401-1416
-
-
Seidner, D.1
Feder, M.2
Cubanski, D.3
Blackstock, S.4
-
17
-
-
33846820314
-
Generalized sampling theorem for bandpass signals
-
A. Prokes, Generalized sampling theorem for bandpass signals, EURASIP J. Appl. Signal Process., vol. 2006, pp. 1-6, 2006.
-
(2006)
EURASIP J. Appl. Signal Process.
, vol.2006
, pp. 1-6
-
-
Prokes, A.1
-
18
-
-
84867519921
-
Generalized sampling expansion for functions on the sphere
-
Nov
-
I. BenHagai, F. M. Fazi, and B. Rafaely, Generalized sampling expansion for functions on the sphere, IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5870-5879, Nov. 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.11
, pp. 5870-5879
-
-
BenHagai, I.1
Fazi, F.M.2
Rafaely, B.3
-
19
-
-
0031101027
-
Generalized sampling theorems in multiresolution subspaces
-
I. Djokovic and P. P. Vaidyanathan, Generalized sampling theorems in multiresolution subspaces, IEEE Trans. Signal Process., vol. 45, no. 3, pp. 583-599, 1997.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.3
, pp. 583-599
-
-
Djokovic, I.1
Vaidyanathan, P.P.2
-
20
-
-
0032139798
-
A generalized sampling theory without bandlimiting constraints
-
Aug
-
M. Unser and J. Zerubia, A generalized sampling theory without bandlimiting constraints, IEEE Trans. Circuits Syst. II, vol. 45, no. 8, pp. 959-969, Aug. 1998.
-
(1998)
IEEE Trans. Circuits Syst. II
, vol.45
, Issue.8
, pp. 959-969
-
-
Unser, M.1
Zerubia, J.2
-
21
-
-
0031358613
-
Generalized sampling: Stability and performance analysis
-
M. Unser and J. Zerubia, Generalized sampling: Stability and performance analysis, IEEE Trans. Signal Process., vol. 45, no. 12, pp. 2941- 2950, 1997.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.12
, pp. 2941-2950
-
-
Unser, M.1
Zerubia, J.2
-
22
-
-
0036685493
-
Generalized sampling: A variational approach Part I: Theory
-
J. Kybic, T. Blu, and M. Unser, Generalized sampling: A variational approach Part I: Theory, IEEE Trans. Signal Process., vol. 50, no. 8, pp. 1965-1976, 2002.
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.8
, pp. 1965-1976
-
-
Kybic, J.1
Blu, T.2
Unser, M.3
-
23
-
-
0036683883
-
Generalized sampling: A variational approach Part II: Applications
-
J. Kybic, T. Blu, and M. Unser, Generalized sampling: A variational approach Part II: Applications, IEEE Trans. Signal Process., vol. 50, no. 8, pp. 1977-1985, 2002.
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.8
, pp. 1977-1985
-
-
Kybic, J.1
Blu, T.2
Unser, M.3
-
24
-
-
43249131527
-
Multi-channel sampling theorems for band-limited signals with fractional Fourier transform
-
Jun
-
F. Zhang, R. Tao, and Y. Wang, Multi-channel sampling theorems for band-limited signals with fractional Fourier transform, Sci. China Ser. E-Tech. Sci., vol. 51, no. 6, pp. 790-802, Jun. 2008.
-
(2008)
Sci. China Ser. E-Tech. Sci.
, vol.51
, Issue.6
, pp. 790-802
-
-
Zhang, F.1
Tao, R.2
Wang, Y.3
-
25
-
-
34547795735
-
Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to superresolution
-
Oct
-
K. K. Sharma and S. D. Joshi, Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to superresolution, Opt. Commun., vol. 278, pp. 52-59, Oct. 2007.
-
(2007)
Opt. Commun.
, vol.278
, pp. 52-59
-
-
Sharma, K.K.1
Joshi, S.D.2
-
26
-
-
77952173338
-
Generalized sampling expansion for bandlimited signals associated with the fractional Fourier transform
-
Jun
-
D. Wei, Q. Ran, and Y. Li, Generalized sampling expansion for bandlimited signals associated with the fractional Fourier transform, IEEE Signal. Process. Lett., vol. 17, no. 6, pp. 595-598, Jun. 2010.
-
(2010)
IEEE Signal. Process. Lett.
, vol.17
, Issue.6
, pp. 595-598
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
-
27
-
-
77956997558
-
Multichannel sampling and reconstruction of bandlimited signals in fractional domain
-
Nov
-
J. Shi, Y. Chi, and N. Zhang, Multichannel sampling and reconstruction of bandlimited signals in fractional domain, IEEE Signal Process. Lett., vol. 17, no. 11, pp. 909-912, Nov. 2010.
-
(2010)
IEEE Signal Process. Lett.
, vol.17
, Issue.11
, pp. 909-912
-
-
Shi, J.1
Chi, Y.2
Zhang, N.3
-
28
-
-
84863230941
-
Generalized sampling theorem for bandpass signals associated with fractional Fourier transform
-
J. Shi, X. Sha, Q. Zhang, and N. Zhang, Generalized sampling theorem for bandpass signals associated with fractional Fourier transform, in Proc. 6th Int. ICST Conf. Commun. Netw. China, 2011, pp. 659-662.
-
(2011)
Proc. 6th Int. ICST Conf. Commun. Netw. China
, pp. 659-662
-
-
Shi, J.1
Sha, X.2
Zhang, Q.3
Zhang, N.4
-
29
-
-
84864948760
-
Multichannel sampling and reconstruction of bandlimited signals in the linear canonical transform domain
-
D. Wei, Q. Ran, and Y. Li, Multichannel sampling and reconstruction of bandlimited signals in the linear canonical transform domain, IET Signal Process., vol. 5, no. 8, pp. 717-727, 2011.
-
(2011)
IET Signal Process.
, vol.5
, Issue.8
, pp. 717-727
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
-
30
-
-
84875500206
-
Sampling reconstruction of N-dimensional bandlimited images after multilinear filtering in fractional Fourier domain
-
May
-
D. Wei and Y. Li, Sampling reconstruction of N-dimensional bandlimited images after multilinear filtering in fractional Fourier domain, Opt. Commun., vol. 295, pp. 26-35, May 2013.
-
(2013)
Opt. Commun.
, vol.295
, pp. 26-35
-
-
Wei, D.1
Li, Y.2
-
31
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
Nov
-
L. B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3084- 3091, Nov. 1994.
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.B.1
-
32
-
-
0003621789
-
-
NewYork, NY, USA: Wiley
-
H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform With Applications in Optics and Signal Processing. NewYork, NY, USA: Wiley, 2001.
-
(2001)
The Fractional Fourier Transform with Applications in Optics and Signal Processing
-
-
Ozaktas, H.M.1
Zalevsky, Z.2
Kutay, M.A.3
-
33
-
-
0035424885
-
Relations between fractional operations and time-frequency distributions, and their applications
-
Aug
-
S. C. Pei and J. J. Ding, Relations between fractional operations and time-frequency distributions, and their applications, IEEE Trans. Signal Process., vol. 49, no. 8, pp. 1638-1655, Aug. 2001.
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.8
, pp. 1638-1655
-
-
Pei, S.C.1
Ding, J.J.2
-
34
-
-
0028382656
-
Convolution, filtering, andmultiplexing in fractional Fourier domains and their rotation to chirp and wavelet transform
-
H. M. Ozaktas et al., Convolution, filtering, andmultiplexing in fractional Fourier domains and their rotation to chirp and wavelet transform, J. Opt. Soc. Amer. A, vol. 11, pp. 547-559, 1994.
-
(1994)
J. Opt. Soc. Amer. A
, vol.11
, pp. 547-559
-
-
Ozaktas, H.M.1
-
35
-
-
0031143161
-
Optimal filtering in fractional Fourier domains
-
1209-1143 Jul
-
M. A. Kutay, H.M. Ozaktas, O. Arikan, and L. Onural, Optimal filtering in fractional Fourier domains, IEEE Trans. Signal Process., vol. 45, no. 7, pp. 1209-1143, Jul. 1997.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.7
-
-
Kutay, M.A.1
Ozaktas, H.M.2
Arikan, O.3
Onural, L.4
-
36
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
Oct
-
D. Wei, Q. Ran, Y. Li, J. Ma, and L. Tan, A convolution and product theorem for the linear canonical transform, IEEE Signal Process. Lett., vol. 16, pp. 853-856, Oct. 2009.
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, pp. 853-856
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
Ma, J.4
Tan, L.5
-
37
-
-
0000042011
-
Simplified fractional Fourier transforms
-
S. C. Pei and J. J. Ding, Simplified fractional Fourier transforms, J. Opt. Soc. Amer. A, vol. 17, pp. 2355-2367, 2000.
-
(2000)
J. Opt. Soc. Amer. A
, vol.17
, pp. 2355-2367
-
-
Pei, S.C.1
Ding, J.J.2
-
38
-
-
0036821495
-
Application of the fractional Fourier transform to moving target detection in airborne SAR
-
Apr
-
H.-B. Sun et al., Application of the fractional Fourier transform to moving target detection in airborne SAR, IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 4, pp. 1416-1424, Apr. 2002.
-
(2002)
IEEE Trans. Aerosp. Electron. Syst.
, vol.38
, Issue.4
, pp. 1416-1424
-
-
Sun, H.-B.1
-
39
-
-
0035363383
-
A multicarrier system based on the fractional Fourier transform for time-frequency selective channels
-
M. A. Martone, A multicarrier system based on the fractional Fourier transform for time-frequency selective channels, IEEE Trans. Commun., vol. 49, no. 6, pp. 1011-1020, 2001.
-
(2001)
IEEE Trans. Commun.
, vol.49
, Issue.6
, pp. 1011-1020
-
-
Martone, M.A.1
-
40
-
-
0035340022
-
Fractional convolution and correlation via operator methods and an application to detection of linear FM signals
-
O. Akay and G. F. Boudreaux-Bartels, Fractional convolution and correlation via operator methods and an application to detection of linear FM signals, IEEE Trans. Signal Process., vol. 49, pp. 979-993, 2001.
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, pp. 979-993
-
-
Akay, O.1
Boudreaux-Bartels, G.F.2
-
41
-
-
77952633484
-
Advanced Hough transform using a multilayer fractional Fourier method
-
D. M. Shi, L. Y. Zheng, and J. G. Liu, Advanced Hough transform using a multilayer fractional Fourier method, IEEE Trans. Image Process., vol. 19, no. 6, pp. 1558-1566, 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.6
, pp. 1558-1566
-
-
Shi, D.M.1
Zheng, L.Y.2
Liu, J.G.3
-
42
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
Mar
-
X. G. Xia, On bandlimited signals with fractional Fourier transform, IEEE Signal Process. Lett., vol. 3, no. 3, pp. 72-74, Mar. 1996.
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, Issue.3
, pp. 72-74
-
-
Xia, X.G.1
-
43
-
-
0030413251
-
On the relationship between the Fourier and fractional Fourier transforms
-
Dec
-
A. I. Zayed, On the relationship between the Fourier and fractional Fourier transforms, IEEE Signal Process. Lett., vol. 3, no. 12, pp. 310- 311, Dec. 1996.
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, Issue.12
, pp. 310-311
-
-
Zayed, A.I.1
-
44
-
-
0033345657
-
Unified fractional Fourier transform and sampling theorem
-
Dec
-
T. Erseghe, P. Kraniauskas, and G. Carioraro, Unified fractional Fourier transform and sampling theorem, IEEE Trans. Signal Process., vol. 47, no. 12, pp. 3419-3423, Dec. 1999.
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.12
, pp. 3419-3423
-
-
Erseghe, T.1
Kraniauskas, P.2
Carioraro, G.3
-
45
-
-
0033177623
-
New sampling formulae for the fractional Fourier transform
-
A. I. Zayed and A. G. Garcia, New sampling formulae for the fractional Fourier transform, Signal Process., vol. 77, no. 1, pp. 111-114, 1999.
-
(1999)
Signal Process.
, vol.77
, Issue.1
, pp. 111-114
-
-
Zayed, A.I.1
Garcia, A.G.2
-
46
-
-
0141892675
-
Sampling and series expansion theorems for fractional Fourier and other transforms
-
C. Candan and H. M. Ozaktas, Sampling and series expansion theorems for fractional Fourier and other transforms, Signal Process., vol. 83, no. 11, pp. 2455-2457, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.11
, pp. 2455-2457
-
-
Candan, C.1
Ozaktas, H.M.2
-
47
-
-
33750119845
-
Sampling theorem for fractional bandlimited signals: A self-contained proof. Application to digital holography
-
R. Torres, P. F. Pellat, and Y. Torres, Sampling theorem for fractional bandlimited signals: A self-contained proof. Application to digital holography, IEEE Signal Process. Lett., vol. 13, pp. 676-679, 2006.
-
(2006)
IEEE Signal Process. Lett.
, vol.13
, pp. 676-679
-
-
Torres, R.1
Pellat, P.F.2
Torres, Y.3
-
48
-
-
37748999882
-
Sampling and sampling rate conversion of band-limited signals in the fractional Fourier transform domain
-
R. Tao, B. Deng, W.-Q. Zhang, and Y. Wang, Sampling and sampling rate conversion of band-limited signals in the fractional Fourier transform domain, IEEE Trans. Signal Process., vol. 56, no. 17, pp. 158-171, 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.17
, pp. 158-171
-
-
Tao, R.1
Deng, B.2
Zhang, W.-Q.3
Wang, Y.4
-
49
-
-
77952196845
-
Sampling and reconstruction of sparse signals in fractional Fourier domain
-
Mar
-
A. Bhandari and P. Marziliano, Sampling and reconstruction of sparse signals in fractional Fourier domain, IEEE Signal Process. Lett., vol. 17, no. 3, pp. 221-224, Mar. 2010.
-
(2010)
IEEE Signal Process. Lett.
, vol.17
, Issue.3
, pp. 221-224
-
-
Bhandari, A.1
Marziliano, P.2
-
50
-
-
84858328439
-
Shift-invariant and sampling spaces associated with the fractional Fourier transform domain
-
Apr
-
A. Bhandari and A. I. Zayed, Shift-invariant and sampling spaces associated with the fractional Fourier transform domain, IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1627-1636, Apr. 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.4
, pp. 1627-1636
-
-
Bhandari, A.1
Zayed, A.I.2
-
51
-
-
34347400181
-
Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain
-
Jul
-
R. Tao, B.-Z. Li, and Y. Wang, Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain, IEEE Trans. Signal Process., vol. 55, pp. 3541-3547, Jul. 2007.
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, pp. 3541-3547
-
-
Tao, R.1
Li, B.-Z.2
Wang, Y.3
-
52
-
-
0029276947
-
A generalization of nonuniform bandpass sampling
-
A. J. Coulson, A generalization of nonuniform bandpass sampling, IEEE Trans. Signal. Process., vol. 43, no. 3, pp. 694-704, 1995.
-
(1995)
IEEE Trans. Signal. Process.
, vol.43
, Issue.3
, pp. 694-704
-
-
Coulson, A.J.1
-
53
-
-
0003409584
-
-
3rd ed. Delhi, India: Prentice-Hall of India
-
J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 3rd ed. Delhi, India: Prentice-Hall of India, 2002.
-
(2002)
Digital Signal Processing: Principles, Algorithms, and Applications
-
-
Proakis, J.G.1
Manolakis, D.G.2
|