-
1
-
-
77958407025
-
The fractional order Fourier transform and its application to quantum mechanics
-
V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980).
-
(1980)
J. Inst. Math. Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
2
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, pp. 3084-3091
-
-
Almeida, L.B.1
-
3
-
-
36849112629
-
Linear canonical transformations and their unitary representations
-
M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1783 (1971).
-
(1971)
J. Math. Phys.
, vol.12
, pp. 1772-1783
-
-
Moshinsky, M.1
Quesne, C.2
-
5
-
-
0028546432
-
Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation
-
S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 1801-1803
-
-
Abe, S.1
Sheridan, J.T.2
-
6
-
-
0001484759
-
ABCD matrix formalism of fractional Fourier optics
-
L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Opt. Eng. 35, 732–740 (1996).
-
(1996)
Opt. Eng.
, vol.35
, pp. 732-740
-
-
Bernardo, L.M.1
-
7
-
-
0038584838
-
Every Fourier optical system is equivalent to consecutive fractional-Fourierdomain filtering
-
H. M. Ozaktas and D. Mendlovic, “Every Fourier optical system is equivalent to consecutive fractional-Fourierdomain filtering,” Appl. Opt. 35, 3167–3170 (1996).
-
(1996)
Appl. Opt.
, vol.35
, pp. 3167-3170
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
8
-
-
33747799699
-
Closed form discrete fractional and affine Fourier transforms
-
S. C. Pei and J. J. Ding, “Closed form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Process. 48, 1338–1353 (2000).
-
(2000)
IEEE Trans. Signal Process.
, vol.48
, pp. 1338-1353
-
-
Pei, S.C.1
Ding, J.J.2
-
9
-
-
0030243105
-
Digital computation of the fractional Fourier transform
-
H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).
-
(1996)
IEEE Trans. Signal Process.
, vol.44
, pp. 2141-2150
-
-
Ozaktas, H.M.1
Arikan, O.2
Kutay, M.A.3
Bozdagi, G.4
-
10
-
-
0038576936
-
Fractional correlation based on the modified fractional order Fourier transform
-
A. M. Almanasreh and M. G. Abushagur, “Fractional correlation based on the modified fractional order Fourier transform,” Opt. Eng. 37, 175–184 (1998).
-
(1998)
Opt. Eng.
, vol.37
, pp. 175-184
-
-
Almanasreh, A.M.1
Abushagur, M.G.2
-
11
-
-
0031143161
-
Optimal filter in fractional Fourier domains
-
M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, “Optimal filter in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, pp. 1129-1143
-
-
Kutay, M.A.1
Ozaktas, H.M.2
Arikan, O.3
Onural, L.4
-
12
-
-
0000380061
-
Fractional Hilbert transform
-
A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional Hilbert transform,” Opt. Lett. 21, 281–283 (1996).
-
(1996)
Opt. Lett.
, vol.21
, pp. 281-283
-
-
Lohmann, A.W.1
Mendlovic, D.2
Zalevsky, Z.3
-
13
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional Fourier domains and their rotation to chirp and wavelet transform
-
H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their rotation to chirp and wavelet transform,” J. Opt. Soc. Am. A 11, 547–559 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
14
-
-
85010145694
-
Relations between the fractional operations and the Wigner distribution, ambiguity function
-
submitted to IEEE Trans. Signal Process
-
S. C. Pei and J. J. Ding, “Relations between the fractional operations and the Wigner distribution, ambiguity function,” submitted to IEEE Trans. Signal Process.
-
-
-
Pei, S.C.1
Ding, J.J.2
-
15
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
L. B. Almeida, “Product and convolution theorems for the fractional Fourier transform,” IEEE Signal Process. Lett. 4, 15–17 (1997).
-
(1997)
IEEE Signal Process. Lett.
, vol.4
, pp. 15-17
-
-
Almeida, L.B.1
-
16
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
A. I. Zayed, “A convolution and product theorem for the fractional Fourier transform,” IEEE Signal Process. Lett. 5, 101–103 (1998).
-
(1998)
IEEE Signal Process. Lett.
, vol.5
, pp. 101-103
-
-
Zayed, A.I.1
-
17
-
-
0031079193
-
Optimal filtering with linear canonical transformations
-
B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun. 135, 32–36 (1997).
-
(1997)
Opt. Commun.
, vol.135
, pp. 32-36
-
-
Barshan, B.1
Kutay, M.A.2
Ozaktas, H.M.3
-
18
-
-
0032092235
-
Fractional Fourier transform and the elliptic gradient-index medium
-
L. Yu, M. Huang, L. Wu, Y. Lu, W. Huang, M. Chen, and Z. Zhu, “Fractional Fourier transform and the elliptic gradient-index medium,” Opt. Commun. 152, 23–25 (1998).
-
(1998)
Opt. Commun.
, vol.152
, pp. 23-25
-
-
Yu, L.1
Huang, M.2
Wu, L.3
Lu, Y.4
Huang, W.5
Chen, M.6
Zhu, Z.7
-
19
-
-
0028494881
-
Fractional order Fourier transform and Fourier optics
-
P. Pellat-Finet and G. Bonnet, “Fractional order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994).
-
(1994)
Opt. Commun.
, vol.111
, pp. 141-154
-
-
Pellat-Finet, P.1
Bonnet, G.2
-
20
-
-
0029230951
-
Fractional correlation
-
D. Mendlovic, H. M. Zalevsky, and A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303–309 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 303-309
-
-
Mendlovic, D.1
Zalevsky, H.M.2
Lohmann, A.W.3
-
21
-
-
0030189141
-
Synthesis of pattern recognition filters for fractional Fourier processing
-
A. W. Lohmann, Z. Zalevsky, and D. Mendlovic, “Synthesis of pattern recognition filters for fractional Fourier processing,” Opt. Commun. 128, 199–204 (1996).
-
(1996)
Opt. Commun.
, vol.128
, pp. 199-204
-
-
Lohmann, A.W.1
Zalevsky, Z.2
Mendlovic, D.3
-
22
-
-
0000094831
-
Optical correlation based on the fractional Fourier transform
-
S. Granieri, R. Arizaga, and E. E. Sicre, “Optical correlation based on the fractional Fourier transform,” Appl. Opt. 36, 6636–6645 (1997).
-
(1997)
Appl. Opt.
, vol.36
, pp. 6636-6645
-
-
Granieri, S.1
Arizaga, R.2
Sicre, E.E.3
|