-
1
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans Signal Proc, 1994, 42: 3084-3091
-
(1994)
IEEE Trans Signal Proc
, vol.42
, pp. 3084-3091
-
-
Almeida, L.B.1
-
3
-
-
77958407025
-
The fractional order Fourier transform and its application to quantum mechanics
-
Namias V. The fractional order Fourier transform and its application to quantum mechanics. J. Inst Math Appl, 1980, 25: 241-265
-
(1980)
J. Inst Math Appl
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
4
-
-
33749465568
-
Research progress of the fractional Fourier in signal processing
-
1
-
Tao R, Deng B, Wang Y. Research progress of the fractional Fourier in signal processing. Sci China Ser F-Inf Sci, 2006, 49(1): 1-25
-
(2006)
Sci China ser F-Inf Sci
, vol.49
, pp. 1-25
-
-
Tao, R.1
Deng, B.2
Wang, Y.3
-
6
-
-
0027682286
-
Image rotation, Wigner rotation, and the fractional Fourier transform
-
Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Amer A, 1993, 10: 2181-2186
-
(1993)
J Opt Soc Amer A
, vol.10
, pp. 2181-2186
-
-
Lohmann, A.W.1
-
7
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transform
-
Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transform. J Opt Soc Amer A, 1994, 11: 547-559
-
(1994)
J Opt Soc Amer A
, vol.11
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
-
8
-
-
0028459601
-
Relationship between the Radon-Wigner and the fractional Fourier transform
-
Lohmann A W, Soffer B H. Relationship between the Radon-Wigner and the fractional Fourier transform. J Opt Soc Amer A, 1994, 11: 1798-1801
-
(1994)
J Opt Soc Amer A
, vol.11
, pp. 1798-1801
-
-
Lohmann, A.W.1
Soffer, B.H.2
-
9
-
-
0001606283
-
The fractional Fourier transform and the Wigner distribution
-
Mustard D A. The fractional Fourier transform and the Wigner distribution. J Aust Math Soc B, 1996, 38: 209-219
-
(1996)
J Aust Math Soc B
, vol.38
, pp. 209-219
-
-
Mustard, D.A.1
-
10
-
-
0035424885
-
Relations between fractional operations and time-frequency distributions, and their applications
-
Pei S C, Ding J J. Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans Signal Proc, 2001, 49: 1638-1655
-
(2001)
IEEE Trans Signal Proc
, vol.49
, pp. 1638-1655
-
-
Pei, S.C.1
Ding, J.J.2
-
11
-
-
0029369313
-
Fractional Fourier domains
-
Ozaktas H M, Aytur O. Fractional Fourier domains. Signal Proc, 1995, 46: 119-124
-
(1995)
Signal Proc
, vol.46
, pp. 119-124
-
-
Ozaktas, H.M.1
Aytur, O.2
-
12
-
-
0032295753
-
A unified framework for the fractional Fourier transform
-
Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transform. IEEE Trans Signal Proc, 1998, 46: 3206-3219
-
(1998)
IEEE Trans Signal Proc
, vol.46
, pp. 3206-3219
-
-
Cariolaro, G.1
Erseghe, T.2
Kraniauskas, P.3
-
13
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
Almeida L B. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Proc Lett, 1997, 4: 15-17
-
(1997)
IEEE Signal Proc Lett
, vol.4
, pp. 15-17
-
-
Almeida, L.B.1
-
14
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
Zayed A I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Proc Lett, 1998, 5: 101-103
-
(1998)
IEEE Signal Proc Lett
, vol.5
, pp. 101-103
-
-
Zayed, A.I.1
-
15
-
-
0030243105
-
Digital computation of the fractional Fourier transform
-
Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform. IEEE Trans Signal Proc, 1996, 44: 2141-2150
-
(1996)
IEEE Trans Signal Proc
, vol.44
, pp. 2141-2150
-
-
Ozaktas, H.M.1
Arikan, O.2
Kutay, M.A.3
-
17
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
Xia X. On bandlimited signals with fractional Fourier transform. IEEE Signal Proc Lett, 1996, 3: 72-74
-
(1996)
IEEE Signal Proc Lett
, vol.3
, pp. 72-74
-
-
Xia, X.1
-
18
-
-
0030413251
-
On the relationship between the Fourier transform and fractional Fourier transform
-
Zayed A I. On the relationship between the Fourier transform and fractional Fourier transform. IEEE Signal Proc Lett, 1996, 3: 310-311
-
(1996)
IEEE Signal Proc Lett
, vol.3
, pp. 310-311
-
-
Zayed, A.I.1
-
19
-
-
0033177623
-
New Sampling formulae for the fractional Fourier transform
-
Zayed A I, Garcia A G. New Sampling formulae for the fractional Fourier transform. Signal Proc, 1999, 77: 111-114
-
(1999)
Signal Proc
, vol.77
, pp. 111-114
-
-
Zayed, A.I.1
Garcia, A.G.2
-
21
-
-
0141892675
-
Sampling and series expansion theorems for fractional Fourier and other transforms
-
Candan C, Ozaktas H M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Proc, 2003, 83: 2455-2457
-
(2003)
Signal Proc
, vol.83
, pp. 2455-2457
-
-
Candan, C.1
Ozaktas, H.M.2
-
22
-
-
25144435554
-
Sampling theorems for bandpass signals with fractional Fourier transform
-
7
-
Zhang W Q, Tao R. Sampling theorems for bandpass signals with fractional Fourier transform. Acta Electron Sin (in Chinese), 2005, 33(7): 1196-1199
-
(2005)
Acta Electron Sin (In Chinese)
, vol.33
, pp. 1196-1199
-
-
Zhang, W.Q.1
Tao, R.2
-
23
-
-
33750119845
-
Sampling theorem for fractional bandlimited signals: A self-contained proof. Application to digital holography
-
Torres R, Pellat-Finet P, Torres Y. Sampling theorem for fractional bandlimited signals: a self-contained proof. Application to digital holography. IEEE Signal Proc Lett, 2006, 13: 676-679
-
(2006)
IEEE Signal Proc Lett
, vol.13
, pp. 676-679
-
-
Torres, R.1
Pellat-Finet, P.2
Torres, Y.3
-
24
-
-
34347400181
-
Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain
-
7
-
Tao R, B. Li Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Proc, 2007, 55(7): 3541-3547
-
(2007)
IEEE Trans Signal Proc
, vol.55
, pp. 3541-3547
-
-
Tao, R.B.1
Li, Z.2
Wang, Y.3
-
25
-
-
0035363383
-
A multicarrier system based on the fractional Fourier transform for time-frequency selective channels
-
6
-
Martone M. A multicarrier system based on the fractional Fourier transform for time-frequency selective channels. IEEE Trans Comm, 2001, 49(6): 1011-1020
-
(2001)
IEEE Trans Comm
, vol.49
, pp. 1011-1020
-
-
Martone, M.1
-
26
-
-
34248371635
-
The OFDM system and equalization algorithm based on the fractional Fourier transform
-
3
-
Chen E Q, Tao R, Zhang W Q, et al. The OFDM system and equalization algorithm based on the fractional Fourier transform. Acta Electron Sin (in Chinese), 2007, 35(3): 409-414
-
(2007)
Acta Electron Sin (In Chinese)
, vol.35
, pp. 409-414
-
-
Chen, E.Q.1
Tao, R.2
Zhang, W.Q.3
-
27
-
-
0024069085
-
Classical sampling theorems in the context of multirate and polyphase digital filter band structures
-
9
-
Vaidyanathan P P, Liu V C. Classical sampling theorems in the context of multirate and polyphase digital filter band structures. IEEE Trans Signal Proc, 1988, 36(9): 1480-1495
-
(1988)
IEEE Trans Signal Proc
, vol.36
, pp. 1480-1495
-
-
Vaidyanathan, P.P.1
Liu, V.C.2
-
29
-
-
0017554734
-
Generalized sampling expansion
-
11
-
Papoulis A. Generalized sampling expansion. IEEE Trans Circuits and Systems, 1977, cas-24(11): 652-654
-
(1977)
IEEE Trans Circuits and Systems
, vol.CAS-24
, pp. 652-654
-
-
Papoulis, A.1
-
30
-
-
0024018237
-
Digital spectra of nonuniformly sampled signals: Fundamentals and high-speed waveform digitizers
-
2
-
Jenq Y C. Digital spectra of nonuniformly sampled signals: Fundamentals and high-speed waveform digitizers. IEEE Trans Instrum Meas, 1988, 37(2): 245-251
-
(1988)
IEEE Trans Instrum Meas
, vol.37
, pp. 245-251
-
-
Jenq, Y.C.1
-
31
-
-
0031167375
-
Perfect reconstruction of digital spectrum from nonuniformly sampled signals
-
3
-
Jenq Y C. Perfect reconstruction of digital spectrum from nonuniformly sampled signals. IEEE Trans Instrum Meas, 1997, 46(3): 649-652
-
(1997)
IEEE Trans Instrum Meas
, vol.46
, pp. 649-652
-
-
Jenq, Y.C.1
-
32
-
-
0030127710
-
Inversion of the Van der Monde matrix
-
Neagoe V E. Inversion of the Van der Monde matrix. IEEE Signal Proc Lett, 1996, 2: 119-120
-
(1996)
IEEE Signal Proc Lett
, vol.2
, pp. 119-120
-
-
Neagoe, V.E.1
|