-
1
-
-
84949117611
-
Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation
-
Bauer, R., and Gharabaghi, A. (2015a). Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation. Front. Neurosci. 9:36. doi: 10.3389/fnins.2015.00036
-
(2015)
Front. Neurosci
, vol.9
, pp. 36
-
-
Bauer, R.1
Gharabaghi, A.2
-
2
-
-
84923013951
-
Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces
-
Bauer, R., and Gharabaghi, A. (2015b). Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces. Front. Behav. Neurosci. 9:21. doi: 10.3389/fnbeh.2015.00021
-
(2015)
Front. Behav. Neurosci
, vol.9
, pp. 21
-
-
Bauer, R.1
Gharabaghi, A.2
-
3
-
-
84922225165
-
Bridging the gap between motor imagery and motor execution with a brain-robot interface
-
Bauer, R., Fels, M., Vukelic, M., Ziemann, U., and Gharabaghi, A. (2015). Bridging the gap between motor imagery and motor execution with a brain-robot interface. Neuroimage 108, 319-327. doi: 10.1016/j.neuroimage.2014.12.026
-
(2015)
Neuroimage
, vol.108
, pp. 319-327
-
-
Bauer, R.1
Fels, M.2
Vukelic, M.3
Ziemann, U.4
Gharabaghi, A.5
-
4
-
-
0032778657
-
Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function
-
Boissy, P., Bourbonnais, D., Carlotti, M. M., Gravel, D., and Arsenault, B. A. (1999). Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin. Rehabil. 13, 354-362. doi: 10.1191/026921599676433080
-
(1999)
Clin. Rehabil
, vol.13
, pp. 354-362
-
-
Boissy, P.1
Bourbonnais, D.2
Carlotti, M.M.3
Gravel, D.4
Arsenault, B.A.5
-
5
-
-
4043138912
-
Providing explicit information disrupts implicit motor learning after basal ganglia stroke
-
Boyd, L. A., and Winstein, C. J. (2004). Providing explicit information disrupts implicit motor learning after basal ganglia stroke. Learn. Mem. 11, 388-396. doi: 10.1101/lm.80104
-
(2004)
Learn. Mem
, vol.11
, pp. 388-396
-
-
Boyd, L.A.1
Winstein, C.J.2
-
6
-
-
84947581753
-
Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation
-
Brauchle, D., Vukelic, M., Bauer, R., and Gharabaghi, A. (2015). Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Front. Hum. Neurosci. 9:564. doi: 10.3389/fnhum.2015.00564
-
(2015)
Front. Hum. Neurosci
, vol.9
, pp. 564
-
-
Brauchle, D.1
Vukelic, M.2
Bauer, R.3
Gharabaghi, A.4
-
7
-
-
33646708503
-
Feedback and cognition in arm motor skill reacquisition after stroke
-
Cirstea, C. M., Ptito, A., and Levin, M. F. (2006). Feedback and cognition in arm motor skill reacquisition after stroke. Stroke 37, 1237-1242. doi: 10.1161/01.STR.0000217417.89347.63
-
(2006)
Stroke
, vol.37
, pp. 1237-1242
-
-
Cirstea, C.M.1
Ptito, A.2
Levin, M.F.3
-
8
-
-
0034048954
-
Compensatory strategies for reaching in stroke
-
Cirstea, M. C., and Levin, M. F. (2000). Compensatory strategies for reaching in stroke. Brain 123 (Pt 5), 940-953. doi: 10.1093/brain/123.5.940
-
(2000)
Brain
, vol.123
, pp. 940-953
-
-
Cirstea, M.C.1
Levin, M.F.2
-
9
-
-
34547830343
-
Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors
-
Cirstea, M. C., and Levin, M. F. (2007). Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neurorehabil. Neural. Repair 21, 398-411. doi: 10.1177/1545968306298414
-
(2007)
Neurorehabil. Neural. Repair
, vol.21
, pp. 398-411
-
-
Cirstea, M.C.1
Levin, M.F.2
-
10
-
-
0142120639
-
Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke
-
Cirstea, M. C., Ptito, A., and Levin, M. F. (2003). Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke. Exp. Brain Res. 152, 476-488. doi: 10.1007/s00221-003-1568-4
-
(2003)
Exp. Brain Res
, vol.152
, pp. 476-488
-
-
Cirstea, M.C.1
Ptito, A.2
Levin, M.F.3
-
11
-
-
84937485164
-
Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?
-
Fels, M., Bauer, R., and Gharabaghi, A. (2015). Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge? J. Neural. Eng. 12:046029. doi: 10.1088/1741-2560/12/4/046029
-
(2015)
J. Neural. Eng
, vol.12
-
-
Fels, M.1
Bauer, R.2
Gharabaghi, A.3
-
12
-
-
84926194380
-
Activity-dependent brain stimulation and robot-assisted movements for use-dependent plasticity
-
Gharabaghi, A. (2015). Activity-dependent brain stimulation and robot-assisted movements for use-dependent plasticity. Clin. Neurophysiol. 126, 853-854. doi: 10.1016/j.clinph.2014.09.004
-
(2015)
Clin. Neurophysiol
, vol.126
, pp. 853-854
-
-
Gharabaghi, A.1
-
13
-
-
84896940565
-
Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation
-
Gharabaghi, A., Kraus, D., Leão, M. T., Spüler, M., Walter, A., Bogdan, M., et al. (2014a). Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front. Hum. Neurosci. 8:122. doi: 10.3389/fnhum.2014.00122
-
(2014)
Front. Hum. Neurosci
, vol.8
, pp. 122
-
-
Gharabaghi, A.1
Kraus, D.2
Leão, M.T.3
Spüler, M.4
Walter, A.5
Bogdan, M.6
-
14
-
-
84917736909
-
Learned self-regulation of the lesioned brain with epidural electrocorticography
-
Gharabaghi, A., Naros, G., Khademi, F., Jesser, J., Spüler, M., Walter, A., et al. (2014b). Learned self-regulation of the lesioned brain with epidural electrocorticography. Front. Behav. Neurosci. 8:429. doi: 10.3389/fnbeh.2014.00429
-
(2014)
Front. Behav. Neurosci
, vol.8
, pp. 429
-
-
Gharabaghi, A.1
Naros, G.2
Khademi, F.3
Jesser, J.4
Spüler, M.5
Walter, A.6
-
15
-
-
84979617239
-
Closed-loop neuroprosthesis for reach-to-grasp assistance: combining adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton
-
Grimm, F., and Gharabaghi, A. (2016). Closed-loop neuroprosthesis for reach-to-grasp assistance: combining adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Front. Neurosci. 10:284. doi: 10.3389/fnins.2016.00284
-
(2016)
Front. Neurosci
, vol.10
, pp. 284
-
-
Grimm, F.1
Gharabaghi, A.2
-
16
-
-
66249138136
-
A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis
-
Housman, S. J., Scott, K. M., and Reinkensmeyer, D. J. (2009). A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil. Neural. Repair 23, 505-514. doi: 10.1177/1545968308331148
-
(2009)
Neurorehabil. Neural. Repair
, vol.23
, pp. 505-514
-
-
Housman, S.J.1
Scott, K.M.2
Reinkensmeyer, D.J.3
-
17
-
-
84959875203
-
Brain state-dependent transcranial magnetic closed-loop stimulation controlled by sensorimotor desynchronization induces robust increase of corticospinal excitability
-
Kraus, D., Naros, G., Bauer, R., Khademi, F., Leão, M. T., Ziemann, U., et al. (2016b). Brain state-dependent transcranial magnetic closed-loop stimulation controlled by sensorimotor desynchronization induces robust increase of corticospinal excitability. Brain Stimul. 9, 415-424. doi: 10.1016/j.brs.2016.02.007
-
(2016)
Brain Stimul
, vol.9
, pp. 415-424
-
-
Kraus, D.1
Naros, G.2
Bauer, R.3
Khademi, F.4
Leão, M.T.5
Ziemann, U.6
-
18
-
-
84958291788
-
Brain-robot interface driven plasticity: distributed modulation of corticospinal excitability
-
Kraus, D., Naros, G., Bauer, R., Leão, M. T., Ziemann, U., and Gharabaghi, A. (2016a). Brain-robot interface driven plasticity: distributed modulation of corticospinal excitability. Neuroimage 15, 522-532. doi: 10.1016/j.neuroimage.2015.09.074
-
(2016)
Neuroimage
, vol.15
, pp. 522-532
-
-
Kraus, D.1
Naros, G.2
Bauer, R.3
Leão, M.T.4
Ziemann, U.5
Gharabaghi, A.6
-
19
-
-
39649101658
-
Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review
-
Kwakkel, G., Kollen, B. J., and Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural. Repair 22, 111-121. doi: 10.1177/1545968307305457
-
(2008)
Neurorehabil. Neural. Repair
, vol.22
, pp. 111-121
-
-
Kwakkel, G.1
Kollen, B.J.2
Krebs, H.I.3
-
20
-
-
0029997559
-
Interjoint coordination during pointing movements is disrupted in spastic hemiparesis
-
Levin, M. F. (1996). Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119 (Pt 1), 281-293. doi: 10.1093/brain/119.1.281
-
(1996)
Brain
, vol.119
, pp. 281-293
-
-
Levin, M.F.1
-
21
-
-
0036197589
-
Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis
-
Levin, M. F., Michaelsen, S. M., Cirstea, C. M., and Roby-Brami, A. (2002). Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp. Brain Res. 143, 171-180. doi: 10.1007/s00221-001-0976-6
-
(2002)
Exp. Brain Res
, vol.143
, pp. 171-180
-
-
Levin, M.F.1
Michaelsen, S.M.2
Cirstea, C.M.3
Roby-Brami, A.4
-
22
-
-
85021705731
-
Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke
-
Mehrholz, J., Pohl, M., Platz, T., Kugler, J., and Elsner, B. (2015). Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 11:CD006876. doi: 10.1002/14651858.CD006876.pub4
-
(2015)
Cochrane Database Syst. Rev
, vol.11
-
-
Mehrholz, J.1
Pohl, M.2
Platz, T.3
Kugler, J.4
Elsner, B.5
-
23
-
-
84947572857
-
Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke
-
Naros, G., and Gharabaghi, A. (2015). Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke. Front. Hum. Neurosci. 9:391. doi: 10.3389/fnhum.2015.00391
-
(2015)
Front. Hum. Neurosci
, vol.9
, pp. 391
-
-
Naros, G.1
Gharabaghi, A.2
-
24
-
-
84959885347
-
Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?
-
Naros, G., Geyer, M., Koch, S., Mayr, L., Ellinger, T., Grimm, F., et al. (2016a). Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction? Clin. Neurophysiol. 127, 2119-2126. doi: 10.1016/j.clinph.2015.12.020
-
(2016)
Clin. Neurophysiol
, vol.127
, pp. 2119-2126
-
-
Naros, G.1
Geyer, M.2
Koch, S.3
Mayr, L.4
Ellinger, T.5
Grimm, F.6
-
25
-
-
84963958354
-
Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance
-
Naros, G., Naros, I., Grimm, F., Ziemann, U., and Gharabaghi, A. (2016b). Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance. Neuroimage 134, 142-152. doi: 10.1016/j.neuroimage.2016.03.016
-
(2016)
Neuroimage
, vol.134
, pp. 142-152
-
-
Naros, G.1
Naros, I.2
Grimm, F.3
Ziemann, U.4
Gharabaghi, A.5
-
26
-
-
84907448686
-
Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review
-
Nordin, N., Xie, S. Q., and Wunsche, B. (2014). Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review. J. Neuroeng. Rehabil. 11:137. doi: 10.1186/1743-0003-11-137
-
(2014)
J. Neuroeng. Rehabil
, vol.11
, pp. 137
-
-
Nordin, N.1
Xie, S.Q.2
Wunsche, B.3
-
27
-
-
84870621573
-
Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial
-
Subramanian, S. K., Lourenco, C. B., Chilingaryan, G., Sveistrup, H., and Levin, M. F. (2013). Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil. Neural. Repair 27, 13-23. doi: 10.1177/1545968312449695
-
(2013)
Neurorehabil. Neural. Repair
, vol.27
, pp. 13-23
-
-
Subramanian, S.K.1
Lourenco, C.B.2
Chilingaryan, G.3
Sveistrup, H.4
Levin, M.F.5
-
28
-
-
77957987911
-
Validity of movement pattern kinematics as measures of arm motor impairment poststroke
-
Subramanian, S. K., Yamanaka, J., Chilingaryan, G., and Levin, M. F. (2010). Validity of movement pattern kinematics as measures of arm motor impairment poststroke. Stroke 41, 2303-2308. doi: 10.1161/STROKEAHA.110.593368
-
(2010)
Stroke
, vol.41
, pp. 2303-2308
-
-
Subramanian, S.K.1
Yamanaka, J.2
Chilingaryan, G.3
Levin, M.F.4
-
29
-
-
84891053685
-
Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations
-
Vukelic, M., Bauer, R., Naros, G., Naros, I., Braun, C., and Gharabaghi, A. (2014). Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations. Neuroimage 87, 147-153. doi: 10.1016/j.neuroimage.2013.10.003
-
(2014)
Neuroimage
, vol.87
, pp. 147-153
-
-
Vukelic, M.1
Bauer, R.2
Naros, G.3
Naros, I.4
Braun, C.5
Gharabaghi, A.6
-
30
-
-
84923017810
-
Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality
-
Vukelic, M., and Gharabaghi, A. (2015a). Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage 111, 1-11. doi: 10.1016/j.neuroimage.2015.01.058
-
(2015)
Neuroimage
, vol.111
, pp. 1-11
-
-
Vukelic, M.1
Gharabaghi, A.2
-
31
-
-
84976232394
-
Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks
-
Vukelic, M., and Gharabaghi, A. (2015b). Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks. Front. Behav. Neurosci. 9:181. doi: 10.3389/fnbeh.2015.00181
-
(2015)
Front. Behav. Neurosci
, vol.9
, pp. 181
-
-
Vukelic, M.1
Gharabaghi, A.2
|