메뉴 건너뛰기




Volumn 35, Issue 21, 2016, Pages 3717-3732

Targeted estimation and inference for the sample average treatment effect in trials with and without pair-matching

Author keywords

cluster randomized trials; pair matching; population average treatment effect (PATE); sample average treatment effect (SATE); targeted maximum likelihood estimation (TMLE)

Indexed keywords

ANTIRETROVIRUS AGENT;

EID: 84980349646     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6965     Document Type: Article
Times cited : (33)

References (52)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 2
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods – application to control of the healthy worker survivor effect
    • Robins J. A new approach to causal inference in mortality studies with sustained exposure periods – application to control of the healthy worker survivor effect. Mathematical Modelling 1986; 7: 1393–1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 4
    • 84892478722 scopus 로고    scopus 로고
    • Inverse probability weighting for covariate adjustment in randomized studies
    • Shen C, Li X, Li L. Inverse probability weighting for covariate adjustment in randomized studies. Statistics in Medicine 2014; 33: 555–568.
    • (2014) Statistics in Medicine , vol.33 , pp. 555-568
    • Shen, C.1    Li, X.2    Li, L.3
  • 5
    • 79953852789 scopus 로고    scopus 로고
    • Implementation of G-computation on a simulated data set: demonstration of a causal inference technique
    • Snowden J, Rose S, Mortimer K. Implementation of G-computation on a simulated data set: demonstration of a causal inference technique. American Journal of Epidemiology 2011; 173(7): 731–738.
    • (2011) American Journal of Epidemiology , vol.173 , Issue.7 , pp. 731-738
    • Snowden, J.1    Rose, S.2    Mortimer, K.3
  • 10
    • 0001058696 scopus 로고
    • Sur les applications de la theorie des probabilites aux experiences agricoles: essai des principes (In Polish). English translation by D.M. Dabrowska and T.P. Speed (1990)
    • Neyman J. Sur les applications de la theorie des probabilites aux experiences agricoles: essai des principes (In Polish). English translation by D.M. Dabrowska and T.P. Speed (1990). Statistical Science 1923; 5: 465–480.
    • (1923) Statistical Science , vol.5 , pp. 465-480
    • Neyman, J.1
  • 11
    • 84972506931 scopus 로고
    • Comment: Neyman (1923) and causal inference in experiments and observational studies
    • Rubin DB. Comment: Neyman (1923) and causal inference in experiments and observational studies. Statistical Science 1990; 5(4): 472–480.
    • (1990) Statistical Science , vol.5 , Issue.4 , pp. 472-480
    • Rubin, D.B.1
  • 12
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: a review
    • Imbens G. Nonparametric estimation of average treatment effects under exogeneity: a review. Review of Economics and Statistics 2004; 86(1): 4–29.
    • (2004) Review of Economics and Statistics , vol.86 , Issue.1 , pp. 4-29
    • Imbens, G.1
  • 13
    • 59849102119 scopus 로고    scopus 로고
    • Variance identification and efficiency analysis in randomized experiments under the matched-pair design
    • Imai K. Variance identification and efficiency analysis in randomized experiments under the matched-pair design. Statistics in Medicine 2008; 27(24): 4857–4873.
    • (2008) Statistics in Medicine , vol.27 , Issue.24 , pp. 4857-4873
    • Imai, K.1
  • 14
    • 84877982981 scopus 로고    scopus 로고
    • Estimators for clustered education RCTs using the Neyman model for causal inference
    • Schochet P. Estimators for clustered education RCTs using the Neyman model for causal inference. Journal of Educational and Behavioral Statistics 2013; 38(3): 219–238.
    • (2013) Journal of Educational and Behavioral Statistics , vol.38 , Issue.3 , pp. 219-238
    • Schochet, P.1
  • 16
    • 78651467125 scopus 로고    scopus 로고
    • Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 Trial
    • Cole S, Stuart E. Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 Trial. American Journal of Epidemiology 2010; 172(1): 107–115.
    • (2010) American Journal of Epidemiology , vol.172 , Issue.1 , pp. 107-115
    • Cole, S.1    Stuart, E.2
  • 17
    • 79952586276 scopus 로고    scopus 로고
    • The use of propensity scores to assess the generalizability of results from randomized trials
    • Stuart E, Cole S, Bradshaw C, Leaf P. The use of propensity scores to assess the generalizability of results from randomized trials. Journal of the Royal Statistical Society: Series A 2011; 174(Part 2): 369–386.
    • (2011) Journal of the Royal Statistical Society: Series A , vol.174 , pp. 369-386
    • Stuart, E.1    Cole, S.2    Bradshaw, C.3    Leaf, P.4
  • 18
    • 84919414947 scopus 로고    scopus 로고
    • A general algorithm for deciding transportability of experimental results
    • Bareinboim E, Pearl J. A general algorithm for deciding transportability of experimental results. Journal of Causal Inference 2013; 1(1): 107–134.
    • (2013) Journal of Causal Inference , vol.1 , Issue.1 , pp. 107-134
    • Bareinboim, E.1    Pearl, J.2
  • 19
    • 84928770171 scopus 로고    scopus 로고
    • From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects
    • Hartman E, Grieve R, Ramsahai R, Sekhon J. From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects. Journal of the Royal Statistical Society: Series A 2015; 178(3): 757–778.
    • (2015) Journal of the Royal Statistical Society: Series A , vol.178 , Issue.3 , pp. 757-778
    • Hartman, E.1    Grieve, R.2    Ramsahai, R.3    Sekhon, J.4
  • 20
    • 84961291757 scopus 로고    scopus 로고
    • Adaptive pair-matching in randomized trials with unbiased and efficient effect estimation
    • Balzer L, Petersen M, van der Laan M, the SEARCH Consortium. Adaptive pair-matching in randomized trials with unbiased and efficient effect estimation. Statistics in Medicine 2015; 34(6): 999–1011.
    • (2015) Statistics in Medicine , vol.34 , Issue.6 , pp. 999-1011
    • Balzer, L.1    Petersen, M.2    van der Laan, M.3
  • 21
    • 0030816096 scopus 로고    scopus 로고
    • The merits of matching in community intervention trials: a cautionary tale
    • Klar N, Donner A. The merits of matching in community intervention trials: a cautionary tale. Statistics in Medicine 1997; 16(15): 1753–1764.
    • (1997) Statistics in Medicine , vol.16 , Issue.15 , pp. 1753-1764
    • Klar, N.1    Donner, A.2
  • 22
    • 6944254409 scopus 로고    scopus 로고
    • Optimal multivariate matching before randomization
    • Greevy R, Lu B, Silber J, Rosenbaum P. Optimal multivariate matching before randomization. Biostatistics 2004; 5(2): 263–275.
    • (2004) Biostatistics , vol.5 , Issue.2 , pp. 263-275
    • Greevy, R.1    Lu, B.2    Silber, J.3    Rosenbaum, P.4
  • 23
    • 65249113483 scopus 로고    scopus 로고
    • The essential role of pair matching in cluster-randomized experiments, with application to the Mexican Universal Health Insurance Evaluation
    • Imai K, King G, Nall C. The essential role of pair matching in cluster-randomized experiments, with application to the Mexican Universal Health Insurance Evaluation. Statistical Science 2009; 24(1): 29–53.
    • (2009) Statistical Science , vol.24 , Issue.1 , pp. 29-53
    • Imai, K.1    King, G.2    Nall, C.3
  • 26
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl J. Causal diagrams for empirical research. Biometrika 1995; 82: 669–710.
    • (1995) Biometrika , vol.82 , pp. 669-710
    • Pearl, J.1
  • 29
    • 84980342439 scopus 로고    scopus 로고
    • Technical Report 314, Division of Biostatistics, University of California, Berkeley, Available from, [Accessed on 6 April 2016]
    • van der Laan MJ, Hubbard AE, Kherad Pajouh S. Statistical inference for data adaptive target parameters, Technical Report 314, Division of Biostatistics, University of California, Berkeley, Available from: http://biostats.bepress.com/ucbbiostat/paper314/ [Accessed on 6 April 2016], 2013.
    • (2013) Statistical inference for data adaptive target parameters
    • van der Laan, M.J.1    Hubbard, A.E.2    Kherad Pajouh, S.3
  • 30
    • 84975294673 scopus 로고    scopus 로고
    • Mining with inference: data-adaptive target parameter
    • In, P. Buhlmann, P. Drineas, M. Kane, M. van der Laan, (eds)., CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL
    • Hubbard A, van der Laan M. 2016. Mining with inference: data-adaptive target parameter. In Handbook of Big Data, P. Buhlmann, P. Drineas, M. Kane, M. van der Laan (eds).CRC Press, Taylor & Francis Group, LLC: Boca Raton, FL; 439–452.
    • (2016) Handbook of Big Data , pp. 439-452
    • Hubbard, A.1    van der Laan, M.2
  • 32
    • 0000904703 scopus 로고
    • Analysis of covariance: its nature and uses
    • Cochran WG. Analysis of covariance: its nature and uses. Biometrics 1957; 13: 261–281.
    • (1957) Biometrics , vol.13 , pp. 261-281
    • Cochran, W.G.1
  • 33
    • 0020334299 scopus 로고
    • Some aspects of analysis of covariance
    • Cox D, McCullagh P. Some aspects of analysis of covariance. Biometrics 1982; 38(3): 541–561.
    • (1982) Biometrics , vol.38 , Issue.3 , pp. 541-561
    • Cox, D.1    McCullagh, P.2
  • 34
    • 53849093809 scopus 로고    scopus 로고
    • Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach
    • Tsiatis A, Davidian M, Zhang M, Lu X. Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. Statistics in Medicine 2008; 27(23): 4658–4677.
    • (2008) Statistics in Medicine , vol.27 , Issue.23 , pp. 4658-4677
    • Tsiatis, A.1    Davidian, M.2    Zhang, M.3    Lu, X.4
  • 35
    • 61749092099 scopus 로고    scopus 로고
    • Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation
    • Moore K, van der Laan M. Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation. Statistics in Medicine 2009; 28(1): 39–64.
    • (2009) Statistics in Medicine , vol.28 , Issue.1 , pp. 39-64
    • Moore, K.1    van der Laan, M.2
  • 36
    • 77950525588 scopus 로고    scopus 로고
    • Simple, efficient estimators of treatment effects in randomized trials using generalized linear models to leverage baseline variables
    • Rosenblum M, van der Laan M. Simple, efficient estimators of treatment effects in randomized trials using generalized linear models to leverage baseline variables. The International Journal of Biostatistics 2010; 6(1): 1–41. DOI: 10.2202/1557-4679.1138.
    • (2010) The International Journal of Biostatistics , vol.6 , Issue.1 , pp. 1-41
    • Rosenblum, M.1    van der Laan, M.2
  • 39
    • 77955263738 scopus 로고    scopus 로고
    • A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome
    • Gruber S, van der Laan M. A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. The International Journal of Biostatistics 2010; 6(1): 1–14. 10.2202/1557-4679.1260.
    • (2010) The International Journal of Biostatistics , vol.6 , Issue.1 , pp. 1-14
    • Gruber, S.1    van der Laan, M.2
  • 40
    • 84980336082 scopus 로고    scopus 로고
    • Estimating effects with rare outcomes and high dimensional covariates: knowledge is power
    • In Press
    • Balzer L, Ahern J, Galea S, van der Laan M. Estimating effects with rare outcomes and high dimensional covariates: knowledge is power. Epidemiologic Methods. In Press.
    • Epidemiologic Methods
    • Balzer, L.1    Ahern, J.2    Galea, S.3    van der Laan, M.4
  • 42
    • 0000858149 scopus 로고    scopus 로고
    • On the role of the propensity score in efficient semiparametric estimation of average treatment effects
    • Hahn J. On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 1998; 2: 315–331.
    • (1998) Econometrica , vol.2 , pp. 315-331
    • Hahn, J.1
  • 43
    • 84872794089 scopus 로고    scopus 로고
    • TMLE: an R package for targeted maximum likelihood estimation
    • Gruber S, van der Laan M. TMLE: an R package for targeted maximum likelihood estimation. Journal of Statistical Software 2012; 51(13): 1–35.
    • (2012) Journal of Statistical Software , vol.51 , Issue.13 , pp. 1-35
    • Gruber, S.1    van der Laan, M.2
  • 45
    • 84964927929 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing,, Vienna, Austria, Available from, [Accessed on 6 April 2016]
    • R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing,Vienna, Austria, 2015. Available from: http://www.R-project.org [Accessed on 6 April 2016].
    • (2015) R: A Language and Environment for Statistical Computing
  • 47
    • 77349110569 scopus 로고    scopus 로고
    • Comment: the essential role of pair matching in cluster-randomized experiments, with application to the Mexican universal health insurance evaluation
    • Zhang K, Small D. Comment: the essential role of pair matching in cluster-randomized experiments, with application to the Mexican universal health insurance evaluation. Statistical Science 2009; 25(1): 59–64.
    • (2009) Statistical Science , vol.25 , Issue.1 , pp. 59-64
    • Zhang, K.1    Small, D.2
  • 48
    • 79959371997 scopus 로고    scopus 로고
    • Optimal nonbipartite matching and its statistical applications
    • Lu B, Greevy R, Xu X, Beck C. Optimal nonbipartite matching and its statistical applications. American Statistician 2011; 65(1): 21–30.
    • (2011) American Statistician , vol.65 , Issue.1 , pp. 21-30
    • Lu, B.1    Greevy, R.2    Xu, X.3    Beck, C.4
  • 49
    • 0030913113 scopus 로고    scopus 로고
    • The COMMIT Research Group. The efficiency of the matched-pairs design of the community intervention trial for smoking cessation (COMMIT)
    • Freedman L, Gail M, Green S, Corle D, The COMMIT Research Group. The efficiency of the matched-pairs design of the community intervention trial for smoking cessation (COMMIT). Controlled Clinical Trials 1997; 18(2): 131–139.
    • (1997) Controlled Clinical Trials , vol.18 , Issue.2 , pp. 131-139
    • Freedman, L.1    Gail, M.2    Green, S.3    Corle, D.4
  • 50
    • 33846199137 scopus 로고    scopus 로고
    • Developments in cluster randomized trials and Statistics in Medicine
    • Campbell M, Donner A, Klar N. Developments in cluster randomized trials and Statistics in Medicine. Statistics in Medicine 2007; 26(1): 2–19.
    • (2007) Statistics in Medicine , vol.26 , Issue.1 , pp. 2-19
    • Campbell, M.1    Donner, A.2    Klar, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.