-
1
-
-
0042061223
-
Hydrogels for tissue engineering: scaffold design variables and applications
-
[1] Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:24 (2003), 4337–4351.
-
(2003)
Biomaterials
, vol.24
, Issue.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
2
-
-
70249091482
-
Hydrogels in regenerative medicine
-
[2] Slaughter, B.V., et al. Hydrogels in regenerative medicine. Adv. Mater. 21:32 − 33 (2009), 3307–3329.
-
(2009)
Adv. Mater.
, vol.21
, Issue.32
, pp. 3307-3329
-
-
Slaughter, B.V.1
-
3
-
-
0042661006
-
Double-network hydrogels with extremely high mechanical strength
-
[3] Gong, J.P., et al. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15:14 (2003), 1155–1158.
-
(2003)
Adv. Mater.
, vol.15
, Issue.14
, pp. 1155-1158
-
-
Gong, J.P.1
-
4
-
-
84859587794
-
Super tough double network hydrogels and their application as biomaterials
-
[4] Haque, M.A., Kurokawa, T., Gong, J.P., Super tough double network hydrogels and their application as biomaterials. Polymer 53:9 (2012), 1805–1822.
-
(2012)
Polymer
, vol.53
, Issue.9
, pp. 1805-1822
-
-
Haque, M.A.1
Kurokawa, T.2
Gong, J.P.3
-
5
-
-
84870884245
-
Control of stem cell fate and function by engineering physical microenvironments
-
[5] Park, J., et al. Control of stem cell fate and function by engineering physical microenvironments. Integr. Biol. 4:9 (2012), 1008–1018.
-
(2012)
Integr. Biol.
, vol.4
, Issue.9
, pp. 1008-1018
-
-
Park, J.1
-
6
-
-
33645773666
-
Local force and geometry sensing regulate cell functions
-
[6] Vogel, V., Sheetz, M., Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:4 (2006), 265–275.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, Issue.4
, pp. 265-275
-
-
Vogel, V.1
Sheetz, M.2
-
7
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
[7] Engler, A.J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126:4 (2006), 677–689.
-
(2006)
Cell
, vol.126
, Issue.4
, pp. 677-689
-
-
Engler, A.J.1
-
8
-
-
34748832291
-
Hydrogel biomaterials: a smart future?
-
[8] Kopeček, J., Hydrogel biomaterials: a smart future?. Biomaterials 28:34 (2007), 5185–5192.
-
(2007)
Biomaterials
, vol.28
, Issue.34
, pp. 5185-5192
-
-
Kopeček, J.1
-
9
-
-
80052266986
-
Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains
-
[9] Cha, C., et al. Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Acta Biomater. 7:10 (2011), 3719–3728.
-
(2011)
Acta Biomater.
, vol.7
, Issue.10
, pp. 3719-3728
-
-
Cha, C.1
-
10
-
-
84555162440
-
Effect of crosslinker concentration on characteristics of superporous hydrogel
-
[10] Chavda, H., Patel, C., Effect of crosslinker concentration on characteristics of superporous hydrogel. Int. J. Pharma. Investig., 1(1), 2011, 17.
-
(2011)
Int. J. Pharma. Investig.
, vol.1
, Issue.1
, pp. 17
-
-
Chavda, H.1
Patel, C.2
-
11
-
-
70449118261
-
Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function
-
[11] Weber, L.M., Lopez, C.G., Anseth, K.S., Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. Journal of Biomedical Materials Research Part A 90:3 (2009), 720–729.
-
(2009)
Journal of Biomedical Materials Research Part A
, vol.90
, Issue.3
, pp. 720-729
-
-
Weber, L.M.1
Lopez, C.G.2
Anseth, K.S.3
-
12
-
-
77956181531
-
The effect of matrix characteristics on fibroblast proliferation in 3D gels
-
[12] Bott, K., et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31:32 (2010), 8454–8464.
-
(2010)
Biomaterials
, vol.31
, Issue.32
, pp. 8454-8464
-
-
Bott, K.1
-
13
-
-
36149021290
-
Band structure of graphite
-
[13] Slonczewski, J., Weiss, P., Band structure of graphite. Phys. Rev., 109(2), 1958, 272.
-
(1958)
Phys. Rev.
, vol.109
, Issue.2
, pp. 272
-
-
Slonczewski, J.1
Weiss, P.2
-
14
-
-
47749150628
-
Measurement of the elastic properties and intrinsic strength of monolayer graphene
-
[14] Lee, C., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887 (2008), 385–388.
-
(2008)
Science
, vol.321
, Issue.5887
, pp. 385-388
-
-
Lee, C.1
-
16
-
-
84862551518
-
Graphene: a versatile nanoplatform for biomedical applications
-
[16] Zhang, Y., et al. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:13 (2012), 3833–3842.
-
(2012)
Nanoscale
, vol.4
, Issue.13
, pp. 3833-3842
-
-
Zhang, Y.1
-
17
-
-
77955719437
-
Graphene/polymer nanocomposites
-
[17] Kim, H., Abdala, A.A., Macosko, C.W., Graphene/polymer nanocomposites. Macromolecules 43:16 (2010), 6515–6530.
-
(2010)
Macromolecules
, vol.43
, Issue.16
, pp. 6515-6530
-
-
Kim, H.1
Abdala, A.A.2
Macosko, C.W.3
-
18
-
-
0000137774
-
Structure of graphite oxide revisited
-
[18] Lerf, A., et al. Structure of graphite oxide revisited. J. Phys. Chem. B 102:23 (1998), 4477–4482.
-
(1998)
J. Phys. Chem. B
, vol.102
, Issue.23
, pp. 4477-4482
-
-
Lerf, A.1
-
19
-
-
54549083300
-
Graphene oxide dispersions in organic solvents
-
[19] Paredes, J., et al. Graphene oxide dispersions in organic solvents. Langmuir 24:19 (2008), 10,560–10,564.
-
(2008)
Langmuir
, vol.24
, Issue.19
, pp. 10560-10564
-
-
Paredes, J.1
-
20
-
-
84907485984
-
Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior
-
[20] Zhang, H., Zhai, D., He, Y., Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv. 4:84 (2014), 44,600–44,609.
-
(2014)
RSC Adv.
, vol.4
, Issue.84
, pp. 44600-44609
-
-
Zhang, H.1
Zhai, D.2
He, Y.3
-
21
-
-
84878720038
-
Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity
-
[21] Fan, J., et al. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A 1:25 (2013), 7433–7443.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.25
, pp. 7433-7443
-
-
Fan, J.1
-
22
-
-
84897690259
-
Graphene oxide/poly (acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model
-
[22] Faghihi, S., et al. Graphene oxide/poly (acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater. Sci. Eng. C 38 (2014), 299–305.
-
(2014)
Mater. Sci. Eng. C
, vol.38
, pp. 299-305
-
-
Faghihi, S.1
-
23
-
-
84896742435
-
Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels
-
[23] Faghihi, S., et al. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J. Appl. Phys., 115(8), 2014, 083,513.
-
(2014)
J. Appl. Phys.
, vol.115
, Issue.8
, pp. 083513
-
-
Faghihi, S.1
-
24
-
-
0842285531
-
Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure
-
[24] Elliott, J.E., et al. Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45:5 (2004), 1503–1510.
-
(2004)
Polymer
, vol.45
, Issue.5
, pp. 1503-1510
-
-
Elliott, J.E.1
-
25
-
-
0037290237
-
The effect of composition of poly (acrylic acid)–gelatin hydrogel on gentamicin sulphate release: in vitro
-
[25] Changez, M., et al. The effect of composition of poly (acrylic acid)–gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24:4 (2003), 527–536.
-
(2003)
Biomaterials
, vol.24
, Issue.4
, pp. 527-536
-
-
Changez, M.1
-
26
-
-
0033167989
-
Fabrication of porous gelatin scaffolds for tissue engineering
-
[26] Kang, H.-W., Tabata, Y., Ikada, Y., Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:14 (1999), 1339–1344.
-
(1999)
Biomaterials
, vol.20
, Issue.14
, pp. 1339-1344
-
-
Kang, H.-W.1
Tabata, Y.2
Ikada, Y.3
-
27
-
-
0033567832
-
Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study
-
[27] Sung, H.W., et al. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J. Biomed. Mater. Res. 46:4 (1999), 520–530.
-
(1999)
J. Biomed. Mater. Res.
, vol.46
, Issue.4
, pp. 520-530
-
-
Sung, H.W.1
-
28
-
-
1442357527
-
Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide
-
[28] Liang, H.C., et al. Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J. Appl. Polym. Sci. 91:6 (2004), 4017–4026.
-
(2004)
J. Appl. Polym. Sci.
, vol.91
, Issue.6
, pp. 4017-4026
-
-
Liang, H.C.1
-
29
-
-
69849111674
-
Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation
-
[29] Zhang, L., et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:14 (2009), 3365–3368.
-
(2009)
Carbon
, vol.47
, Issue.14
, pp. 3365-3368
-
-
Zhang, L.1
-
30
-
-
84859808818
-
Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites
-
[30] Huang, Y., et al. Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 401 (2012), 97–106.
-
(2012)
Colloids Surf. A Physicochem. Eng. Asp.
, vol.401
, pp. 97-106
-
-
Huang, Y.1
-
31
-
-
79959508838
-
Strong and bioactive gelatin–graphene oxide nanocomposites
-
[31] Wan, C., Frydrych, M., Chen, B., Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7:13 (2011), 6159–6166.
-
(2011)
Soft Matter
, vol.7
, Issue.13
, pp. 6159-6166
-
-
Wan, C.1
Frydrych, M.2
Chen, B.3
-
32
-
-
84888638734
-
Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
-
[32] Shin, S.R., et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv. Mater. 25:44 (2013), 6385–6391.
-
(2013)
Adv. Mater.
, vol.25
, Issue.44
, pp. 6385-6391
-
-
Shin, S.R.1
-
33
-
-
84923376183
-
Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications
-
[33] Imani, R., Emami, S.H., Faghihi, S., Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Phys. Chem. Chem. Phys. 17:9 (2015), 6328–6339.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, Issue.9
, pp. 6328-6339
-
-
Imani, R.1
Emami, S.H.2
Faghihi, S.3
-
35
-
-
82955188779
-
Preparation of poly (acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells
-
[35] Tang, Z., et al. Preparation of poly (acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells. J. Power Sources 203 (2012), 282–287.
-
(2012)
J. Power Sources
, vol.203
, pp. 282-287
-
-
Tang, Z.1
-
36
-
-
80053305470
-
Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions
-
[36] Wang, C., et al. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir 27:19 (2011), 12,058–12,068.
-
(2011)
Langmuir
, vol.27
, Issue.19
, pp. 12058-12068
-
-
Wang, C.1
-
37
-
-
27744596445
-
Controlled degradability of polysaccharide multilayer films in vitro and in vivo
-
[37] Picart, C., et al. Controlled degradability of polysaccharide multilayer films in vitro and in vivo. Adv. Funct. Mater. 15:11 (2005), 1771–1780.
-
(2005)
Adv. Funct. Mater.
, vol.15
, Issue.11
, pp. 1771-1780
-
-
Picart, C.1
-
38
-
-
84922752548
-
Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach
-
[38] Imani, R., Emami, S.H., Faghihi, S., Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach. J. Nanopart. Res. 17:2 (2015), 1–15.
-
(2015)
J. Nanopart. Res.
, vol.17
, Issue.2
, pp. 1-15
-
-
Imani, R.1
Emami, S.H.2
Faghihi, S.3
-
39
-
-
84863691491
-
Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels
-
[39] Liu, R., et al. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 22:28 (2012), 14,160–14,167.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.28
, pp. 14160-14167
-
-
Liu, R.1
-
40
-
-
11844277583
-
Advances in superporous hydrogels
-
[40] Omidian, H., Rocca, J.G., Park, K., Advances in superporous hydrogels. J. Control. Release 102:1 (2005), 3–12.
-
(2005)
J. Control. Release
, vol.102
, Issue.1
, pp. 3-12
-
-
Omidian, H.1
Rocca, J.G.2
Park, K.3
-
41
-
-
84862195144
-
Study on graphene-oxide-based polyacrylamide composite hydrogels
-
[41] Shen, J., et al. Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos. A: Appl. Sci. Manuf. 43:9 (2012), 1476–1481.
-
(2012)
Compos. A: Appl. Sci. Manuf.
, vol.43
, Issue.9
, pp. 1476-1481
-
-
Shen, J.1
-
42
-
-
0037118961
-
Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
-
[42] Haraguchi, K., Takehisa, T., Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater., 14(16), 2002, 1120.
-
(2002)
Adv. Mater.
, vol.14
, Issue.16
, pp. 1120
-
-
Haraguchi, K.1
Takehisa, T.2
-
43
-
-
84902175238
-
Nanoparticles meet electrospinning: recent advances and future prospects
-
[43] Zhang, C.-L., Yu, S.-H., Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43:13 (2014), 4423–4448.
-
(2014)
Chem. Soc. Rev.
, vol.43
, Issue.13
, pp. 4423-4448
-
-
Zhang, C.-L.1
Yu, S.-H.2
-
44
-
-
79951594300
-
Preparation and characterization of swellable polymer-based superporous hydrogel composite of poly (acrylamide-co-acrylic acid)
-
[44] Chavda, H.V., Patel, C.N., Preparation and characterization of swellable polymer-based superporous hydrogel composite of poly (acrylamide-co-acrylic acid). Trends Biomater. Artif. Organs 24:1 (2010), 83–89.
-
(2010)
Trends Biomater. Artif. Organs
, vol.24
, Issue.1
, pp. 83-89
-
-
Chavda, H.V.1
Patel, C.N.2
-
45
-
-
0001906446
-
Spatial inhomogeneity and dynamic fluctuations of polymer gels
-
(Feature Article)
-
[45] Shibayama, M., Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol. Chem. Phys. 199:1 (1998), 1–30 (Feature Article).
-
(1998)
Macromol. Chem. Phys.
, vol.199
, Issue.1
, pp. 1-30
-
-
Shibayama, M.1
-
46
-
-
22344452924
-
Effect of spatial gel inhomogeneity on the elastic modulus of strong polyelectrolyte hydrogels
-
[46] Ozdogan, A., Okay, O., Effect of spatial gel inhomogeneity on the elastic modulus of strong polyelectrolyte hydrogels. Polym. Bull. 54:6 (2005), 435–442.
-
(2005)
Polym. Bull.
, vol.54
, Issue.6
, pp. 435-442
-
-
Ozdogan, A.1
Okay, O.2
-
47
-
-
84902539712
-
A protocol for rheological characterization of hydrogels for tissue engineering strategies
-
[47] Zuidema, J.M., et al. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res. B Appl. Biomater. 102:5 (2014), 1063–1073.
-
(2014)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.102
, Issue.5
, pp. 1063-1073
-
-
Zuidema, J.M.1
-
48
-
-
0030033719
-
Mechanisms of polymer degradation and erosion
-
[48] Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials 17:2 (1996), 103–114.
-
(1996)
Biomaterials
, vol.17
, Issue.2
, pp. 103-114
-
-
Göpferich, A.1
-
49
-
-
77952195319
-
Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers
-
[49] Lai, J.-Y., Li, Y.-T., Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules 11:5 (2010), 1387–1397.
-
(2010)
Biomacromolecules
, vol.11
, Issue.5
, pp. 1387-1397
-
-
Lai, J.-Y.1
Li, Y.-T.2
-
50
-
-
84906946132
-
Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation
-
[50] Holloway, J.L., et al. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release 191 (2014), 63–70.
-
(2014)
J. Control. Release
, vol.191
, pp. 63-70
-
-
Holloway, J.L.1
-
51
-
-
77957553780
-
Crosslink density dependence of polymer degradation kinetics: photocrosslinked acrylates
-
[51] Krongauz, V.V., Crosslink density dependence of polymer degradation kinetics: photocrosslinked acrylates. Thermochim. Acta 503 (2010), 70–84.
-
(2010)
Thermochim. Acta
, vol.503
, pp. 70-84
-
-
Krongauz, V.V.1
-
52
-
-
0036320242
-
Why degradable polymers undergo surface erosion or bulk erosion
-
[52] von Burkersroda, F., Schedl, L., Göpferich, A., Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:21 (2002), 4221–4231.
-
(2002)
Biomaterials
, vol.23
, Issue.21
, pp. 4221-4231
-
-
von Burkersroda, F.1
Schedl, L.2
Göpferich, A.3
-
53
-
-
84863339717
-
The influence of composition on the physical properties of PLA-PEG-PLA-co-Boltorn based polyester hydrogels and their biological performance
-
[53] Wang, D.K., et al. The influence of composition on the physical properties of PLA-PEG-PLA-co-Boltorn based polyester hydrogels and their biological performance. J. Mater. Chem. 22:14 (2012), 6994–7004.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.14
, pp. 6994-7004
-
-
Wang, D.K.1
-
54
-
-
84897916440
-
Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation
-
[54] Mazaheri, M., Akhavan, O., Simchi, A., Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl. Surf. Sci. 301 (2014), 456–462.
-
(2014)
Appl. Surf. Sci.
, vol.301
, pp. 456-462
-
-
Mazaheri, M.1
Akhavan, O.2
Simchi, A.3
-
55
-
-
84895061666
-
Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability
-
[55] Marimuthu, M., et al. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability. Appl. Surf. Sci. 293 (2014), 124–131.
-
(2014)
Appl. Surf. Sci.
, vol.293
, pp. 124-131
-
-
Marimuthu, M.1
|