메뉴 건너뛰기




Volumn 106, Issue , 2016, Pages 120-131

Graphene oxide–enriched double network hydrogel with tunable physico-mechanical properties and performance

Author keywords

Cross link density; Double network hydrogel; Graphene oxide; Nanocomposite; Physico mechanical properties

Indexed keywords

ATOMIC FORCE MICROSCOPY; BIOMECHANICS; CARBON; CROSSLINKING; DEGRADATION; DENSITY (SPECIFIC GRAVITY); FOURIER TRANSFORM INFRARED SPECTROSCOPY; GRAPHENE; MECHANICAL PROPERTIES; NANOCOMPOSITES; POLYETHYLENES; POLYMERIZATION; POROSITY; SCAFFOLDS (BIOLOGY); SCANNING ELECTRON MICROSCOPY; TISSUE; TISSUE ENGINEERING; X RAY DIFFRACTION;

EID: 84979884682     PISSN: 13815148     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.reactfunctpolym.2016.07.015     Document Type: Article
Times cited : (20)

References (55)
  • 1
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • [1] Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:24 (2003), 4337–4351.
    • (2003) Biomaterials , vol.24 , Issue.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 2
    • 70249091482 scopus 로고    scopus 로고
    • Hydrogels in regenerative medicine
    • [2] Slaughter, B.V., et al. Hydrogels in regenerative medicine. Adv. Mater. 21:32 − 33 (2009), 3307–3329.
    • (2009) Adv. Mater. , vol.21 , Issue.32 , pp. 3307-3329
    • Slaughter, B.V.1
  • 3
    • 0042661006 scopus 로고    scopus 로고
    • Double-network hydrogels with extremely high mechanical strength
    • [3] Gong, J.P., et al. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15:14 (2003), 1155–1158.
    • (2003) Adv. Mater. , vol.15 , Issue.14 , pp. 1155-1158
    • Gong, J.P.1
  • 4
    • 84859587794 scopus 로고    scopus 로고
    • Super tough double network hydrogels and their application as biomaterials
    • [4] Haque, M.A., Kurokawa, T., Gong, J.P., Super tough double network hydrogels and their application as biomaterials. Polymer 53:9 (2012), 1805–1822.
    • (2012) Polymer , vol.53 , Issue.9 , pp. 1805-1822
    • Haque, M.A.1    Kurokawa, T.2    Gong, J.P.3
  • 5
    • 84870884245 scopus 로고    scopus 로고
    • Control of stem cell fate and function by engineering physical microenvironments
    • [5] Park, J., et al. Control of stem cell fate and function by engineering physical microenvironments. Integr. Biol. 4:9 (2012), 1008–1018.
    • (2012) Integr. Biol. , vol.4 , Issue.9 , pp. 1008-1018
    • Park, J.1
  • 6
    • 33645773666 scopus 로고    scopus 로고
    • Local force and geometry sensing regulate cell functions
    • [6] Vogel, V., Sheetz, M., Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:4 (2006), 265–275.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , Issue.4 , pp. 265-275
    • Vogel, V.1    Sheetz, M.2
  • 7
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • [7] Engler, A.J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126:4 (2006), 677–689.
    • (2006) Cell , vol.126 , Issue.4 , pp. 677-689
    • Engler, A.J.1
  • 8
    • 34748832291 scopus 로고    scopus 로고
    • Hydrogel biomaterials: a smart future?
    • [8] Kopeček, J., Hydrogel biomaterials: a smart future?. Biomaterials 28:34 (2007), 5185–5192.
    • (2007) Biomaterials , vol.28 , Issue.34 , pp. 5185-5192
    • Kopeček, J.1
  • 9
    • 80052266986 scopus 로고    scopus 로고
    • Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains
    • [9] Cha, C., et al. Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Acta Biomater. 7:10 (2011), 3719–3728.
    • (2011) Acta Biomater. , vol.7 , Issue.10 , pp. 3719-3728
    • Cha, C.1
  • 10
    • 84555162440 scopus 로고    scopus 로고
    • Effect of crosslinker concentration on characteristics of superporous hydrogel
    • [10] Chavda, H., Patel, C., Effect of crosslinker concentration on characteristics of superporous hydrogel. Int. J. Pharma. Investig., 1(1), 2011, 17.
    • (2011) Int. J. Pharma. Investig. , vol.1 , Issue.1 , pp. 17
    • Chavda, H.1    Patel, C.2
  • 11
    • 70449118261 scopus 로고    scopus 로고
    • Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function
    • [11] Weber, L.M., Lopez, C.G., Anseth, K.S., Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. Journal of Biomedical Materials Research Part A 90:3 (2009), 720–729.
    • (2009) Journal of Biomedical Materials Research Part A , vol.90 , Issue.3 , pp. 720-729
    • Weber, L.M.1    Lopez, C.G.2    Anseth, K.S.3
  • 12
    • 77956181531 scopus 로고    scopus 로고
    • The effect of matrix characteristics on fibroblast proliferation in 3D gels
    • [12] Bott, K., et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31:32 (2010), 8454–8464.
    • (2010) Biomaterials , vol.31 , Issue.32 , pp. 8454-8464
    • Bott, K.1
  • 13
    • 36149021290 scopus 로고
    • Band structure of graphite
    • [13] Slonczewski, J., Weiss, P., Band structure of graphite. Phys. Rev., 109(2), 1958, 272.
    • (1958) Phys. Rev. , vol.109 , Issue.2 , pp. 272
    • Slonczewski, J.1    Weiss, P.2
  • 14
    • 47749150628 scopus 로고    scopus 로고
    • Measurement of the elastic properties and intrinsic strength of monolayer graphene
    • [14] Lee, C., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887 (2008), 385–388.
    • (2008) Science , vol.321 , Issue.5887 , pp. 385-388
    • Lee, C.1
  • 16
    • 84862551518 scopus 로고    scopus 로고
    • Graphene: a versatile nanoplatform for biomedical applications
    • [16] Zhang, Y., et al. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:13 (2012), 3833–3842.
    • (2012) Nanoscale , vol.4 , Issue.13 , pp. 3833-3842
    • Zhang, Y.1
  • 17
    • 77955719437 scopus 로고    scopus 로고
    • Graphene/polymer nanocomposites
    • [17] Kim, H., Abdala, A.A., Macosko, C.W., Graphene/polymer nanocomposites. Macromolecules 43:16 (2010), 6515–6530.
    • (2010) Macromolecules , vol.43 , Issue.16 , pp. 6515-6530
    • Kim, H.1    Abdala, A.A.2    Macosko, C.W.3
  • 18
    • 0000137774 scopus 로고    scopus 로고
    • Structure of graphite oxide revisited
    • [18] Lerf, A., et al. Structure of graphite oxide revisited. J. Phys. Chem. B 102:23 (1998), 4477–4482.
    • (1998) J. Phys. Chem. B , vol.102 , Issue.23 , pp. 4477-4482
    • Lerf, A.1
  • 19
    • 54549083300 scopus 로고    scopus 로고
    • Graphene oxide dispersions in organic solvents
    • [19] Paredes, J., et al. Graphene oxide dispersions in organic solvents. Langmuir 24:19 (2008), 10,560–10,564.
    • (2008) Langmuir , vol.24 , Issue.19 , pp. 10560-10564
    • Paredes, J.1
  • 20
    • 84907485984 scopus 로고    scopus 로고
    • Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior
    • [20] Zhang, H., Zhai, D., He, Y., Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv. 4:84 (2014), 44,600–44,609.
    • (2014) RSC Adv. , vol.4 , Issue.84 , pp. 44600-44609
    • Zhang, H.1    Zhai, D.2    He, Y.3
  • 21
    • 84878720038 scopus 로고    scopus 로고
    • Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity
    • [21] Fan, J., et al. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A 1:25 (2013), 7433–7443.
    • (2013) J. Mater. Chem. A , vol.1 , Issue.25 , pp. 7433-7443
    • Fan, J.1
  • 22
    • 84897690259 scopus 로고    scopus 로고
    • Graphene oxide/poly (acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model
    • [22] Faghihi, S., et al. Graphene oxide/poly (acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater. Sci. Eng. C 38 (2014), 299–305.
    • (2014) Mater. Sci. Eng. C , vol.38 , pp. 299-305
    • Faghihi, S.1
  • 23
    • 84896742435 scopus 로고    scopus 로고
    • Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels
    • [23] Faghihi, S., et al. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J. Appl. Phys., 115(8), 2014, 083,513.
    • (2014) J. Appl. Phys. , vol.115 , Issue.8 , pp. 083513
    • Faghihi, S.1
  • 24
    • 0842285531 scopus 로고    scopus 로고
    • Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure
    • [24] Elliott, J.E., et al. Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45:5 (2004), 1503–1510.
    • (2004) Polymer , vol.45 , Issue.5 , pp. 1503-1510
    • Elliott, J.E.1
  • 25
    • 0037290237 scopus 로고    scopus 로고
    • The effect of composition of poly (acrylic acid)–gelatin hydrogel on gentamicin sulphate release: in vitro
    • [25] Changez, M., et al. The effect of composition of poly (acrylic acid)–gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24:4 (2003), 527–536.
    • (2003) Biomaterials , vol.24 , Issue.4 , pp. 527-536
    • Changez, M.1
  • 26
    • 0033167989 scopus 로고    scopus 로고
    • Fabrication of porous gelatin scaffolds for tissue engineering
    • [26] Kang, H.-W., Tabata, Y., Ikada, Y., Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:14 (1999), 1339–1344.
    • (1999) Biomaterials , vol.20 , Issue.14 , pp. 1339-1344
    • Kang, H.-W.1    Tabata, Y.2    Ikada, Y.3
  • 27
    • 0033567832 scopus 로고    scopus 로고
    • Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study
    • [27] Sung, H.W., et al. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J. Biomed. Mater. Res. 46:4 (1999), 520–530.
    • (1999) J. Biomed. Mater. Res. , vol.46 , Issue.4 , pp. 520-530
    • Sung, H.W.1
  • 28
    • 1442357527 scopus 로고    scopus 로고
    • Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide
    • [28] Liang, H.C., et al. Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J. Appl. Polym. Sci. 91:6 (2004), 4017–4026.
    • (2004) J. Appl. Polym. Sci. , vol.91 , Issue.6 , pp. 4017-4026
    • Liang, H.C.1
  • 29
    • 69849111674 scopus 로고    scopus 로고
    • Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation
    • [29] Zhang, L., et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:14 (2009), 3365–3368.
    • (2009) Carbon , vol.47 , Issue.14 , pp. 3365-3368
    • Zhang, L.1
  • 30
    • 84859808818 scopus 로고    scopus 로고
    • Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites
    • [30] Huang, Y., et al. Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 401 (2012), 97–106.
    • (2012) Colloids Surf. A Physicochem. Eng. Asp. , vol.401 , pp. 97-106
    • Huang, Y.1
  • 31
    • 79959508838 scopus 로고    scopus 로고
    • Strong and bioactive gelatin–graphene oxide nanocomposites
    • [31] Wan, C., Frydrych, M., Chen, B., Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7:13 (2011), 6159–6166.
    • (2011) Soft Matter , vol.7 , Issue.13 , pp. 6159-6166
    • Wan, C.1    Frydrych, M.2    Chen, B.3
  • 32
    • 84888638734 scopus 로고    scopus 로고
    • Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
    • [32] Shin, S.R., et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv. Mater. 25:44 (2013), 6385–6391.
    • (2013) Adv. Mater. , vol.25 , Issue.44 , pp. 6385-6391
    • Shin, S.R.1
  • 33
    • 84923376183 scopus 로고    scopus 로고
    • Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications
    • [33] Imani, R., Emami, S.H., Faghihi, S., Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Phys. Chem. Chem. Phys. 17:9 (2015), 6328–6339.
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , Issue.9 , pp. 6328-6339
    • Imani, R.1    Emami, S.H.2    Faghihi, S.3
  • 35
    • 82955188779 scopus 로고    scopus 로고
    • Preparation of poly (acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells
    • [35] Tang, Z., et al. Preparation of poly (acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells. J. Power Sources 203 (2012), 282–287.
    • (2012) J. Power Sources , vol.203 , pp. 282-287
    • Tang, Z.1
  • 36
    • 80053305470 scopus 로고    scopus 로고
    • Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions
    • [36] Wang, C., et al. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir 27:19 (2011), 12,058–12,068.
    • (2011) Langmuir , vol.27 , Issue.19 , pp. 12058-12068
    • Wang, C.1
  • 37
    • 27744596445 scopus 로고    scopus 로고
    • Controlled degradability of polysaccharide multilayer films in vitro and in vivo
    • [37] Picart, C., et al. Controlled degradability of polysaccharide multilayer films in vitro and in vivo. Adv. Funct. Mater. 15:11 (2005), 1771–1780.
    • (2005) Adv. Funct. Mater. , vol.15 , Issue.11 , pp. 1771-1780
    • Picart, C.1
  • 38
    • 84922752548 scopus 로고    scopus 로고
    • Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach
    • [38] Imani, R., Emami, S.H., Faghihi, S., Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach. J. Nanopart. Res. 17:2 (2015), 1–15.
    • (2015) J. Nanopart. Res. , vol.17 , Issue.2 , pp. 1-15
    • Imani, R.1    Emami, S.H.2    Faghihi, S.3
  • 39
    • 84863691491 scopus 로고    scopus 로고
    • Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels
    • [39] Liu, R., et al. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 22:28 (2012), 14,160–14,167.
    • (2012) J. Mater. Chem. , vol.22 , Issue.28 , pp. 14160-14167
    • Liu, R.1
  • 40
    • 11844277583 scopus 로고    scopus 로고
    • Advances in superporous hydrogels
    • [40] Omidian, H., Rocca, J.G., Park, K., Advances in superporous hydrogels. J. Control. Release 102:1 (2005), 3–12.
    • (2005) J. Control. Release , vol.102 , Issue.1 , pp. 3-12
    • Omidian, H.1    Rocca, J.G.2    Park, K.3
  • 41
    • 84862195144 scopus 로고    scopus 로고
    • Study on graphene-oxide-based polyacrylamide composite hydrogels
    • [41] Shen, J., et al. Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos. A: Appl. Sci. Manuf. 43:9 (2012), 1476–1481.
    • (2012) Compos. A: Appl. Sci. Manuf. , vol.43 , Issue.9 , pp. 1476-1481
    • Shen, J.1
  • 42
    • 0037118961 scopus 로고    scopus 로고
    • Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
    • [42] Haraguchi, K., Takehisa, T., Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater., 14(16), 2002, 1120.
    • (2002) Adv. Mater. , vol.14 , Issue.16 , pp. 1120
    • Haraguchi, K.1    Takehisa, T.2
  • 43
    • 84902175238 scopus 로고    scopus 로고
    • Nanoparticles meet electrospinning: recent advances and future prospects
    • [43] Zhang, C.-L., Yu, S.-H., Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43:13 (2014), 4423–4448.
    • (2014) Chem. Soc. Rev. , vol.43 , Issue.13 , pp. 4423-4448
    • Zhang, C.-L.1    Yu, S.-H.2
  • 44
    • 79951594300 scopus 로고    scopus 로고
    • Preparation and characterization of swellable polymer-based superporous hydrogel composite of poly (acrylamide-co-acrylic acid)
    • [44] Chavda, H.V., Patel, C.N., Preparation and characterization of swellable polymer-based superporous hydrogel composite of poly (acrylamide-co-acrylic acid). Trends Biomater. Artif. Organs 24:1 (2010), 83–89.
    • (2010) Trends Biomater. Artif. Organs , vol.24 , Issue.1 , pp. 83-89
    • Chavda, H.V.1    Patel, C.N.2
  • 45
    • 0001906446 scopus 로고    scopus 로고
    • Spatial inhomogeneity and dynamic fluctuations of polymer gels
    • (Feature Article)
    • [45] Shibayama, M., Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol. Chem. Phys. 199:1 (1998), 1–30 (Feature Article).
    • (1998) Macromol. Chem. Phys. , vol.199 , Issue.1 , pp. 1-30
    • Shibayama, M.1
  • 46
    • 22344452924 scopus 로고    scopus 로고
    • Effect of spatial gel inhomogeneity on the elastic modulus of strong polyelectrolyte hydrogels
    • [46] Ozdogan, A., Okay, O., Effect of spatial gel inhomogeneity on the elastic modulus of strong polyelectrolyte hydrogels. Polym. Bull. 54:6 (2005), 435–442.
    • (2005) Polym. Bull. , vol.54 , Issue.6 , pp. 435-442
    • Ozdogan, A.1    Okay, O.2
  • 47
    • 84902539712 scopus 로고    scopus 로고
    • A protocol for rheological characterization of hydrogels for tissue engineering strategies
    • [47] Zuidema, J.M., et al. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res. B Appl. Biomater. 102:5 (2014), 1063–1073.
    • (2014) J. Biomed. Mater. Res. B Appl. Biomater. , vol.102 , Issue.5 , pp. 1063-1073
    • Zuidema, J.M.1
  • 48
    • 0030033719 scopus 로고    scopus 로고
    • Mechanisms of polymer degradation and erosion
    • [48] Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials 17:2 (1996), 103–114.
    • (1996) Biomaterials , vol.17 , Issue.2 , pp. 103-114
    • Göpferich, A.1
  • 49
    • 77952195319 scopus 로고    scopus 로고
    • Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers
    • [49] Lai, J.-Y., Li, Y.-T., Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules 11:5 (2010), 1387–1397.
    • (2010) Biomacromolecules , vol.11 , Issue.5 , pp. 1387-1397
    • Lai, J.-Y.1    Li, Y.-T.2
  • 50
    • 84906946132 scopus 로고    scopus 로고
    • Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation
    • [50] Holloway, J.L., et al. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release 191 (2014), 63–70.
    • (2014) J. Control. Release , vol.191 , pp. 63-70
    • Holloway, J.L.1
  • 51
    • 77957553780 scopus 로고    scopus 로고
    • Crosslink density dependence of polymer degradation kinetics: photocrosslinked acrylates
    • [51] Krongauz, V.V., Crosslink density dependence of polymer degradation kinetics: photocrosslinked acrylates. Thermochim. Acta 503 (2010), 70–84.
    • (2010) Thermochim. Acta , vol.503 , pp. 70-84
    • Krongauz, V.V.1
  • 52
    • 0036320242 scopus 로고    scopus 로고
    • Why degradable polymers undergo surface erosion or bulk erosion
    • [52] von Burkersroda, F., Schedl, L., Göpferich, A., Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:21 (2002), 4221–4231.
    • (2002) Biomaterials , vol.23 , Issue.21 , pp. 4221-4231
    • von Burkersroda, F.1    Schedl, L.2    Göpferich, A.3
  • 53
    • 84863339717 scopus 로고    scopus 로고
    • The influence of composition on the physical properties of PLA-PEG-PLA-co-Boltorn based polyester hydrogels and their biological performance
    • [53] Wang, D.K., et al. The influence of composition on the physical properties of PLA-PEG-PLA-co-Boltorn based polyester hydrogels and their biological performance. J. Mater. Chem. 22:14 (2012), 6994–7004.
    • (2012) J. Mater. Chem. , vol.22 , Issue.14 , pp. 6994-7004
    • Wang, D.K.1
  • 54
    • 84897916440 scopus 로고    scopus 로고
    • Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation
    • [54] Mazaheri, M., Akhavan, O., Simchi, A., Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl. Surf. Sci. 301 (2014), 456–462.
    • (2014) Appl. Surf. Sci. , vol.301 , pp. 456-462
    • Mazaheri, M.1    Akhavan, O.2    Simchi, A.3
  • 55
    • 84895061666 scopus 로고    scopus 로고
    • Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability
    • [55] Marimuthu, M., et al. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability. Appl. Surf. Sci. 293 (2014), 124–131.
    • (2014) Appl. Surf. Sci. , vol.293 , pp. 124-131
    • Marimuthu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.