-
1
-
-
18444403157
-
Stress–strain behavior of thermoplastic polyurethanes
-
[1] Qi, H.J., Boyce, M.C., Stress–strain behavior of thermoplastic polyurethanes. Mech. Mater. 37 (2005), 817–839.
-
(2005)
Mech. Mater.
, vol.37
, pp. 817-839
-
-
Qi, H.J.1
Boyce, M.C.2
-
2
-
-
69549116412
-
Polyurethane Nanocomposites
-
[2] Khudyakov, I.V., Zopf, R.D., Turro, N.J., Polyurethane Nanocomposites. Des. Monomers Polym. 12 (2009), 279–290.
-
(2009)
Des. Monomers Polym.
, vol.12
, pp. 279-290
-
-
Khudyakov, I.V.1
Zopf, R.D.2
Turro, N.J.3
-
3
-
-
71549116416
-
ZnO nanorod-thermoplastic polyurethane nanocomposites: Morphology and shape memory performance
-
[3] Koerner, H., Kelley, J., George, J., Drummy, L., Mirau, P., Bell, N.S., Hsu, J.W.P., Vaia, R.A., ZnO nanorod-thermoplastic polyurethane nanocomposites: Morphology and shape memory performance. Macromolecules 42 (2009), 8933–8942.
-
(2009)
Macromolecules
, vol.42
, pp. 8933-8942
-
-
Koerner, H.1
Kelley, J.2
George, J.3
Drummy, L.4
Mirau, P.5
Bell, N.S.6
Hsu, J.W.P.7
Vaia, R.A.8
-
4
-
-
47949113728
-
Transient microstructure of low hard segment thermoplastic polyurethane under uniaxial deformation
-
[4] Koerner, H., Kelley, J.J., Vaia, R.A., Transient microstructure of low hard segment thermoplastic polyurethane under uniaxial deformation. Macromolecules 41 (2008), 4709–4716.
-
(2008)
Macromolecules
, vol.41
, pp. 4709-4716
-
-
Koerner, H.1
Kelley, J.J.2
Vaia, R.A.3
-
5
-
-
79959459258
-
Cellulose nanomaterials review: structure, properties and nanocomposites
-
[5] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40 (2011), 3941–3994.
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 3941-3994
-
-
Moon, R.J.1
Martini, A.2
Nairn, J.3
Simonsen, J.4
Youngblood, J.5
-
6
-
-
16344384008
-
Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field
-
[6] Samir, M.S.A., Alloin, F., Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6 (2005), 612–626.
-
(2005)
Biomacromolecules
, vol.6
, pp. 612-626
-
-
Samir, M.S.A.1
Alloin, F.2
Dufresne, A.3
-
7
-
-
0029356382
-
Polymer nanocomposites reinforced by cellulose whiskers
-
[7] Favier, V., Chanzy, H., Cavaille, J.Y., Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28 (1995), 6365–6367.
-
(1995)
Macromolecules
, vol.28
, pp. 6365-6367
-
-
Favier, V.1
Chanzy, H.2
Cavaille, J.Y.3
-
8
-
-
84922274625
-
Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans
-
[8] Zhao, Y., Zhang, Y., Lindström, M.E., Li, J., Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr. Polym. 117 (2015), 286–296.
-
(2015)
Carbohydr. Polym.
, vol.117
, pp. 286-296
-
-
Zhao, Y.1
Zhang, Y.2
Lindström, M.E.3
Li, J.4
-
9
-
-
79960066199
-
Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process
-
[9] Jonoobi, M., Khazaeian, A., Tahir, P.M., Azry, S.S., Oksman, K., Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18 (2011), 1085–1095.
-
(2011)
Cellulose
, vol.18
, pp. 1085-1095
-
-
Jonoobi, M.1
Khazaeian, A.2
Tahir, P.M.3
Azry, S.S.4
Oksman, K.5
-
10
-
-
84927663875
-
Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone
-
[10] Amiralian, N., Annamalai, P.K., Memmott, P., Taran, E., Schmidt, S., Martin, D.J., Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone. RSC Adv. 5 (2015), 32124–32132.
-
(2015)
RSC Adv.
, vol.5
, pp. 32124-32132
-
-
Amiralian, N.1
Annamalai, P.K.2
Memmott, P.3
Taran, E.4
Schmidt, S.5
Martin, D.J.6
-
11
-
-
84937976674
-
Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods
-
[11] Amiralian, N., Annamalai, P.K., Memmott, P., Martin, D.J., Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22 (2015), 2483–2498.
-
(2015)
Cellulose
, vol.22
, pp. 2483-2498
-
-
Amiralian, N.1
Annamalai, P.K.2
Memmott, P.3
Martin, D.J.4
-
12
-
-
84936930653
-
Production of cellulose nanocrystals via a scalable mechanical method
-
[12] Amin, K.N.M., Annamalai, P.K., Morrow, I.C., Martin, D., Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv. 5 (2015), 57133–57140.
-
(2015)
RSC Adv.
, vol.5
, pp. 57133-57140
-
-
Amin, K.N.M.1
Annamalai, P.K.2
Morrow, I.C.3
Martin, D.4
-
13
-
-
58149199483
-
Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials
-
[13] Filson, P.B., Dawson-Andoh, B.E., Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol. 100 (2009), 2259–2264.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 2259-2264
-
-
Filson, P.B.1
Dawson-Andoh, B.E.2
-
14
-
-
84892909117
-
Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals-processing matters
-
[14] Annamalai, P.K., Dagnon, K.L., Monemian, S., Foster, E.J., Rowan, S.J., Weder, C., Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals-processing matters. ACS Appl. Mater. Interfaces 6 (2014), 967–976.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 967-976
-
-
Annamalai, P.K.1
Dagnon, K.L.2
Monemian, S.3
Foster, E.J.4
Rowan, S.J.5
Weder, C.6
-
15
-
-
77950340857
-
Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites
-
[15] Liu, H.Y., Liu, D.G., Yao, F., Wu, Q.L., Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour. Technol. 101 (2010), 5685–5692.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 5685-5692
-
-
Liu, H.Y.1
Liu, D.G.2
Yao, F.3
Wu, Q.L.4
-
16
-
-
84871264213
-
Transparent epoxy acrylate resin nanocomposites reinforced with cellulose nanocrystals
-
[16] Pan, H.F., Song, L., Ma, L.Y., Hu, Y., Transparent epoxy acrylate resin nanocomposites reinforced with cellulose nanocrystals. Ind. Eng. Chem. Res. 51 (2012), 16326–16332.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 16326-16332
-
-
Pan, H.F.1
Song, L.2
Ma, L.Y.3
Hu, Y.4
-
17
-
-
84869760466
-
Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge
-
[17] Dufresne, A., Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int. Polym. Proc. 27 (2012), 557–564.
-
(2012)
Int. Polym. Proc.
, vol.27
, pp. 557-564
-
-
Dufresne, A.1
-
18
-
-
80054987968
-
Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol-gel process to facilitate dispersion
-
[18] Siqueira, G., Mathew, A.P., Oksman, K., Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol-gel process to facilitate dispersion. Compos. Sci. Technol. 71 (2011), 1886–1892.
-
(2011)
Compos. Sci. Technol.
, vol.71
, pp. 1886-1892
-
-
Siqueira, G.1
Mathew, A.P.2
Oksman, K.3
-
19
-
-
38649087099
-
Novel nanocomposites based on polyurethane and micro fibrillated cellulose
-
[19] Seydibeyoglu, M.O., Oksman, K., Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos. Sci. Technol. 68 (2008), 908–914.
-
(2008)
Compos. Sci. Technol.
, vol.68
, pp. 908-914
-
-
Seydibeyoglu, M.O.1
Oksman, K.2
-
20
-
-
77649152503
-
Cellulosic nanocomposites: a review
-
[20] Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M., Cellulosic nanocomposites: a review. Bioresources 3 (2008), 929–980.
-
(2008)
Bioresources
, vol.3
, pp. 929-980
-
-
Hubbe, M.A.1
Rojas, O.J.2
Lucia, L.A.3
Sain, M.4
-
21
-
-
84862550964
-
The role of ferrofluid on surface smoothness of bacterial cellulose nanocomposite flexible display
-
[21] Ummartyotin, S., Juntaro, J., Sain, M., Manuspiya, H., The role of ferrofluid on surface smoothness of bacterial cellulose nanocomposite flexible display. Chem. Eng. J. 193 (2012), 16–20.
-
(2012)
Chem. Eng. J.
, vol.193
, pp. 16-20
-
-
Ummartyotin, S.1
Juntaro, J.2
Sain, M.3
Manuspiya, H.4
-
22
-
-
84992178350
-
Review of the recent developments in cellulose nanocomposite processing
-
[22] Oksman, K., Aitomäki, Y., Mathew, A.P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., Hooshmand, S., Review of the recent developments in cellulose nanocomposite processing. Compos. Part A Appl. Sci. Manuf., 2015.
-
(2015)
Compos. Part A Appl. Sci. Manuf.
-
-
Oksman, K.1
Aitomäki, Y.2
Mathew, A.P.3
Siqueira, G.4
Zhou, Q.5
Butylina, S.6
Tanpichai, S.7
Zhou, X.8
Hooshmand, S.9
-
23
-
-
84887341974
-
Development of bacterial cellulose and poly (vinylidene fluoride) binary blend system: structure and properties
-
[23] O-Rak, K., Phakdeepataraphan, E., Bunnak, N., Ummartyotin, S., Sain, M., Manuspiya, H., Development of bacterial cellulose and poly (vinylidene fluoride) binary blend system: structure and properties. Chem. Eng. J. 237 (2014), 396–402.
-
(2014)
Chem. Eng. J.
, vol.237
, pp. 396-402
-
-
O-Rak, K.1
Phakdeepataraphan, E.2
Bunnak, N.3
Ummartyotin, S.4
Sain, M.5
Manuspiya, H.6
-
24
-
-
38049070254
-
A high strength nanocomposite based on microcrystalline cellulose and polyurethane
-
[24] Wu, Q.J., Henriksson, M., Liu, X., Berglund, L.A., A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8 (2007), 3687–3692.
-
(2007)
Biomacromolecules
, vol.8
, pp. 3687-3692
-
-
Wu, Q.J.1
Henriksson, M.2
Liu, X.3
Berglund, L.A.4
-
25
-
-
33947626700
-
New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane
-
[25] Cao, X., Dong, H., Li, C.M., New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8 (2007), 899–904.
-
(2007)
Biomacromolecules
, vol.8
, pp. 899-904
-
-
Cao, X.1
Dong, H.2
Li, C.M.3
-
26
-
-
80052454803
-
Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect
-
[26] Mendez, J., Annamalai, P.K., Eichhorn, S.J., Rusli, R., Rowan, S.J., Foster, E.J., Weder, C., Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44 (2011), 6827–6835.
-
(2011)
Macromolecules
, vol.44
, pp. 6827-6835
-
-
Mendez, J.1
Annamalai, P.K.2
Eichhorn, S.J.3
Rusli, R.4
Rowan, S.J.5
Foster, E.J.6
Weder, C.7
-
27
-
-
80052036303
-
Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications
-
[27] Cherian, B.M., Leão, A.L., de Souza, S.F., Costa, L.M.M., de Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R., Thomas, S., Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr. Polym. 86 (2011), 1790–1798.
-
(2011)
Carbohydr. Polym.
, vol.86
, pp. 1790-1798
-
-
Cherian, B.M.1
Leão, A.L.2
de Souza, S.F.3
Costa, L.M.M.4
de Olyveira, G.M.5
Kottaisamy, M.6
Nagarajan, E.R.7
Thomas, S.8
-
28
-
-
79958787881
-
Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals
-
[28] Pei, A., Malho, J.-M., Ruokolainen, J., Zhou, Q., Berglund, L.A., Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44 (2011), 4422–4427.
-
(2011)
Macromolecules
, vol.44
, pp. 4422-4427
-
-
Pei, A.1
Malho, J.-M.2
Ruokolainen, J.3
Zhou, Q.4
Berglund, L.A.5
-
29
-
-
33845554695
-
Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers
-
[29] Brunette, C.M., Hsu, S.L., Macknight, W.J., Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers. Macromolecules 15 (1982), 71–77.
-
(1982)
Macromolecules
, vol.15
, pp. 71-77
-
-
Brunette, C.M.1
Hsu, S.L.2
Macknight, W.J.3
-
30
-
-
33745181198
-
A kinetic investigation of polyurethane polymerization for reactive extrusion purposes
-
[30] Verhoeven, V.W.A., Padsalgikar, A.D., Ganzeveld, K.J., Janssen, L.P.B.M., A kinetic investigation of polyurethane polymerization for reactive extrusion purposes. J. Appl. Polym. Sci. 101 (2006), 370–382.
-
(2006)
J. Appl. Polym. Sci.
, vol.101
, pp. 370-382
-
-
Verhoeven, V.W.A.1
Padsalgikar, A.D.2
Ganzeveld, K.J.3
Janssen, L.P.B.M.4
-
31
-
-
0019020675
-
Microphase separation and properties of urethane elastomers
-
[31] Nierzwicki, W., Wysocka, E., Microphase separation and properties of urethane elastomers. J. Appl. Polym. Sci. 25 (1980), 739–746.
-
(1980)
J. Appl. Polym. Sci.
, vol.25
, pp. 739-746
-
-
Nierzwicki, W.1
Wysocka, E.2
-
32
-
-
77955773379
-
Theoretical study of hydrogen bonding interactions on MDI-based polyurethane
-
[32] Zhang, C.L., Hu, J.L., Chen, S.J., Ji, F.L., Theoretical study of hydrogen bonding interactions on MDI-based polyurethane. J. Mol. Model. 16 (2010), 1391–1399.
-
(2010)
J. Mol. Model.
, vol.16
, pp. 1391-1399
-
-
Zhang, C.L.1
Hu, J.L.2
Chen, S.J.3
Ji, F.L.4
-
33
-
-
0025453708
-
Physical and chemical cross-linking effects in polyurethane elastomers
-
[33] Kontou, E., Spathis, G., Niaounakis, M., Kefalas, V., Physical and chemical cross-linking effects in polyurethane elastomers. Colloid Polym. Sci. 268 (1990), 636–644.
-
(1990)
Colloid Polym. Sci.
, vol.268
, pp. 636-644
-
-
Kontou, E.1
Spathis, G.2
Niaounakis, M.3
Kefalas, V.4
-
34
-
-
0031373640
-
Hydrogen-bond interactions between ester and urethane linkages in small model compounds and polyurethanes
-
[34] Yen, F.S., Hong, J.L., Hydrogen-bond interactions between ester and urethane linkages in small model compounds and polyurethanes. Macromolecules 30 (1997), 7927–7938.
-
(1997)
Macromolecules
, vol.30
, pp. 7927-7938
-
-
Yen, F.S.1
Hong, J.L.2
-
35
-
-
0035137699
-
Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios
-
[35] Tien, Y.I., Wei, K.H., Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42 (2001), 3213–3221.
-
(2001)
Polymer
, vol.42
, pp. 3213-3221
-
-
Tien, Y.I.1
Wei, K.H.2
-
36
-
-
0342716508
-
Infrared studies of segmented polyurethan elastomers. 1. Hydrogen bonding
-
579-&
-
[36] Seymour, R.W., Estes, G.M., Cooper, S.L., Infrared studies of segmented polyurethan elastomers. 1. Hydrogen bonding. Macromolecules, 3, 1970 579-&.
-
(1970)
Macromolecules
, vol.3
-
-
Seymour, R.W.1
Estes, G.M.2
Cooper, S.L.3
-
37
-
-
0026754905
-
Spectroscopic analysis of ordering and phase-separation behavior of model polyurethanes in a restricted geometry
-
[37] Meuse, C.W., Yang, X.Z., Yang, D.C., Hsu, S.L., Spectroscopic analysis of ordering and phase-separation behavior of model polyurethanes in a restricted geometry. Macromolecules 25 (1992), 925–932.
-
(1992)
Macromolecules
, vol.25
, pp. 925-932
-
-
Meuse, C.W.1
Yang, X.Z.2
Yang, D.C.3
Hsu, S.L.4
-
38
-
-
0031121675
-
The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers.2. SAXS-DSC annealing study
-
[38] Martin, D.J., Meijs, G.F., Gunatillake, P.A., McCarthy, S.J., Renwick, G.M., The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers.2. SAXS-DSC annealing study. J. Appl. Polym. Sci. 64 (1997), 803–817.
-
(1997)
J. Appl. Polym. Sci.
, vol.64
, pp. 803-817
-
-
Martin, D.J.1
Meijs, G.F.2
Gunatillake, P.A.3
McCarthy, S.J.4
Renwick, G.M.5
-
39
-
-
0002351409
-
Thermal analysis of polyurethane block polymers
-
[39] Seymour, R.W., Cooper, S.L., Thermal analysis of polyurethane block polymers. Macromolecules 6 (1972), 48–53.
-
(1972)
Macromolecules
, vol.6
, pp. 48-53
-
-
Seymour, R.W.1
Cooper, S.L.2
-
40
-
-
70549089111
-
Temperature dependent microphase mixing of model polyurethanes with different intersegment compatibilities
-
[40] Pongkitwitoon, S., Hernández, R., Weksler, J., Padsalgikar, A., Choi, T., Runt, J., Temperature dependent microphase mixing of model polyurethanes with different intersegment compatibilities. Polymer 50 (2009), 6305–6311.
-
(2009)
Polymer
, vol.50
, pp. 6305-6311
-
-
Pongkitwitoon, S.1
Hernández, R.2
Weksler, J.3
Padsalgikar, A.4
Choi, T.5
Runt, J.6
-
41
-
-
1442348431
-
Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates
-
[41] Finnigan, B., Martin, D., Halley, P., Truss, R., Campbell, K., Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer 45 (2004), 2249–2260.
-
(2004)
Polymer
, vol.45
, pp. 2249-2260
-
-
Finnigan, B.1
Martin, D.2
Halley, P.3
Truss, R.4
Campbell, K.5
-
42
-
-
77950524665
-
Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) – crystallization and mechanical property effects
-
[42] Pei, A.H., Zhou, Q., Berglund, L.A., Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) – crystallization and mechanical property effects. Compos. Sci. Technol. 70 (2010), 815–821.
-
(2010)
Compos. Sci. Technol.
, vol.70
, pp. 815-821
-
-
Pei, A.H.1
Zhou, Q.2
Berglund, L.A.3
-
43
-
-
84891363626
-
The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes
-
[43] Saralegi, A., Gonzalez, M.L., Valea, A., Eceiza, A., Corcuera, M.A., The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos. Sci. Technol. 92 (2014), 27–33.
-
(2014)
Compos. Sci. Technol.
, vol.92
, pp. 27-33
-
-
Saralegi, A.1
Gonzalez, M.L.2
Valea, A.3
Eceiza, A.4
Corcuera, M.A.5
-
44
-
-
80055023666
-
Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane
-
[44] Rueda, L., d'Arlas, B.F., Zhou, Q., Berglund, L.A., Corcuera, M.A., Mondragon, I., Eceiza, A., Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Compos. Sci. Technol. 71 (2011), 1953–1960.
-
(2011)
Compos. Sci. Technol.
, vol.71
, pp. 1953-1960
-
-
Rueda, L.1
d'Arlas, B.F.2
Zhou, Q.3
Berglund, L.A.4
Corcuera, M.A.5
Mondragon, I.6
Eceiza, A.7
-
45
-
-
79956213184
-
Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites
-
[45] Zou, J.W., Zhang, F., Huang, J., Chang, P.R., Su, Z.M., Yu, J.H., Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites. Carbohydr. Polym. 85 (2011), 824–831.
-
(2011)
Carbohydr. Polym.
, vol.85
, pp. 824-831
-
-
Zou, J.W.1
Zhang, F.2
Huang, J.3
Chang, P.R.4
Su, Z.M.5
Yu, J.H.6
-
46
-
-
2342561877
-
Characterization of TPU-elastomers by thermal analysis (DSC)
-
[46] Frick, A., Rochman, A., Characterization of TPU-elastomers by thermal analysis (DSC). Polym. Test 23 (2004), 413–417.
-
(2004)
Polym. Test
, vol.23
, pp. 413-417
-
-
Frick, A.1
Rochman, A.2
-
47
-
-
73849122728
-
Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes
-
[47] Auad, M.L., Mosiewicki, M.A., Richardson, T., Aranguren, M.I., Marcovich, N.E., Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J. Appl. Polym. Sci. 115 (2010), 1215–1225.
-
(2010)
J. Appl. Polym. Sci.
, vol.115
, pp. 1215-1225
-
-
Auad, M.L.1
Mosiewicki, M.A.2
Richardson, T.3
Aranguren, M.I.4
Marcovich, N.E.5
-
48
-
-
84924439752
-
Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals
-
[48] Liu, J.C., Martin, D.J., Moon, R.J., Youngblood, J.P., Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. J. Appl. Polym. Sci., 132, 2015.
-
(2015)
J. Appl. Polym. Sci.
, vol.132
-
-
Liu, J.C.1
Martin, D.J.2
Moon, R.J.3
Youngblood, J.P.4
-
49
-
-
78651390498
-
Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents
-
[49] Yilgor, I., Eynur, T., Bilgin, S., Yilgor, E., Wilkes, G.L., Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents. Polymer 52 (2011), 266–274.
-
(2011)
Polymer
, vol.52
, pp. 266-274
-
-
Yilgor, I.1
Eynur, T.2
Bilgin, S.3
Yilgor, E.4
Wilkes, G.L.5
-
50
-
-
25444517108
-
Relationship between mechanical properties and exfoliation degree of clay in polyurethane nanocomposites
-
[50] Xia, H., Shaw, S.J., Song, M., Relationship between mechanical properties and exfoliation degree of clay in polyurethane nanocomposites. Polym. Int. 54 (2005), 1392–1400.
-
(2005)
Polym. Int.
, vol.54
, pp. 1392-1400
-
-
Xia, H.1
Shaw, S.J.2
Song, M.3
-
51
-
-
84892822254
-
A visco-hyperelastic damage model for cyclic stress-softening, hysteresis and permanent set in rubber using the network alteration theory
-
[51] Ayoub, G., Zairi, F., Nait-Abdelaziz, M., Gloaguen, J.M., Kridli, G., A visco-hyperelastic damage model for cyclic stress-softening, hysteresis and permanent set in rubber using the network alteration theory. Int. J. Plast. 54 (2014), 19–33.
-
(2014)
Int. J. Plast.
, vol.54
, pp. 19-33
-
-
Ayoub, G.1
Zairi, F.2
Nait-Abdelaziz, M.3
Gloaguen, J.M.4
Kridli, G.5
-
52
-
-
33846202011
-
Self-assessing photoluminescent polyurethanes
-
[52] Crenshaw, B.R., Weder, C., Self-assessing photoluminescent polyurethanes. Macromolecules 39 (2006), 9581–9589.
-
(2006)
Macromolecules
, vol.39
, pp. 9581-9589
-
-
Crenshaw, B.R.1
Weder, C.2
-
53
-
-
27844473349
-
Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers
-
[53] Christenson, E.M., Anderson, J.M., Hiltner, A., Baer, E., Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 46 (2005), 11744–11754.
-
(2005)
Polymer
, vol.46
, pp. 11744-11754
-
-
Christenson, E.M.1
Anderson, J.M.2
Hiltner, A.3
Baer, E.4
-
54
-
-
77950817549
-
Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources
-
[54] Hojabri, L., Kong, X., Narine, S.S., Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources. Biomacromolecules 11 (2010), 911–918.
-
(2010)
Biomacromolecules
, vol.11
, pp. 911-918
-
-
Hojabri, L.1
Kong, X.2
Narine, S.S.3
-
55
-
-
78649572147
-
Biobased polyurethanes from polyether polyols obtained by ionic-coordinative polymerization of epoxidized methyl oleate
-
[55] Del Rio, E., Lligadas, G., Ronda, J., Galià, M., Cádiz, V., Biobased polyurethanes from polyether polyols obtained by ionic-coordinative polymerization of epoxidized methyl oleate. J. Polym. Sci., Part A: Polym. Chem. 48 (2010), 5009–5017.
-
(2010)
J. Polym. Sci., Part A: Polym. Chem.
, vol.48
, pp. 5009-5017
-
-
Del Rio, E.1
Lligadas, G.2
Ronda, J.3
Galià, M.4
Cádiz, V.5
-
56
-
-
84942122611
-
Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties
-
0885328215590054
-
[56] Oh, S.-Y., Kang, M.-S., Knowles, J.C., Gong, M.-S., Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties. J. Biomater. Appl., 2015 0885328215590054.
-
(2015)
J. Biomater. Appl.
-
-
Oh, S.-Y.1
Kang, M.-S.2
Knowles, J.C.3
Gong, M.-S.4
-
57
-
-
84966400985
-
Chemically recyclable biobased polyurethanes
-
[57] Schneiderman, D.K., Vanderlaan, M.E., Mannion, A.M., Panthani, T.R., Batiste, D.C., Wang, J.Z., Bates, F.S., Macosko, C.W., Hillmyer, M.A., Chemically recyclable biobased polyurethanes. ACS Macro Lett. 5 (2016), 515–518.
-
(2016)
ACS Macro Lett.
, vol.5
, pp. 515-518
-
-
Schneiderman, D.K.1
Vanderlaan, M.E.2
Mannion, A.M.3
Panthani, T.R.4
Batiste, D.C.5
Wang, J.Z.6
Bates, F.S.7
Macosko, C.W.8
Hillmyer, M.A.9
-
58
-
-
84911891996
-
Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols
-
[58] Charlon, M., Heinrich, B., Matter, Y., Couzigné, E., Donnio, B., Avérous, L., Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols. Eur. Polymer J. 61 (2014), 197–205.
-
(2014)
Eur. Polymer J.
, vol.61
, pp. 197-205
-
-
Charlon, M.1
Heinrich, B.2
Matter, Y.3
Couzigné, E.4
Donnio, B.5
Avérous, L.6
-
59
-
-
65249111543
-
Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization
-
[59] Hojabri, L., Kong, X., Narine, S.S., Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10 (2009), 884–891.
-
(2009)
Biomacromolecules
, vol.10
, pp. 884-891
-
-
Hojabri, L.1
Kong, X.2
Narine, S.S.3
|