메뉴 건너뛰기




Volumn 291, Issue , 2016, Pages 373-385

Hydrological flow rate estimation using artificial neural networks: Model development and potential applications

Author keywords

Artificial neural networks; Climatic scenario; Flow rate; Hydroenergy production; Monte Carlo simulation

Indexed keywords

ELECTRIC POWER GENERATION; ELECTRIC POWER SYSTEMS; ELECTRIC UTILITIES; FLOW RATE; FORECASTING; INTELLIGENT SYSTEMS; MONTE CARLO METHODS; NEURAL NETWORKS; WATER MANAGEMENT;

EID: 84979656196     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2016.07.014     Document Type: Article
Times cited : (18)

References (50)
  • 1
    • 84961130484 scopus 로고    scopus 로고
    • Artificial neural network regression as a local search heuristic for ensemble strategies in differential evolution
    • [1] Fister, I., Suganthan, P.N., Fister, I. Jr., Kamal, S.M., Al-Marzouki, F.M., Perc, M., Strnad, D., Artificial neural network regression as a local search heuristic for ensemble strategies in differential evolution. Nonlinear Dyn. 84 (2016), 895–914.
    • (2016) Nonlinear Dyn. , vol.84 , pp. 895-914
    • Fister, I.1    Suganthan, P.N.2    Fister, I.3    Kamal, S.M.4    Al-Marzouki, F.M.5    Perc, M.6    Strnad, D.7
  • 2
    • 84928898343 scopus 로고    scopus 로고
    • Computational intelligence in sports: challenges and opportunities within a new research domain
    • [2] Fister, I. Jr., Ljubič, K., Suganthan, P.N., Perc, M., Fister, I., Computational intelligence in sports: challenges and opportunities within a new research domain. Appl. Math. Comput. 262 (2015), 178–186.
    • (2015) Appl. Math. Comput. , vol.262 , pp. 178-186
    • Fister, I.1    Ljubič, K.2    Suganthan, P.N.3    Perc, M.4    Fister, I.5
  • 4
    • 84930221579 scopus 로고    scopus 로고
    • Assessing the factor of safety using an artificial neural network: case studies on landslides in Giresun, Turkey
    • [4] Gelisli, K., Kaya, T., Babacan, A.E., Assessing the factor of safety using an artificial neural network: case studies on landslides in Giresun, Turkey. Environ. Earth Sci. 73 (2015), 8639–8646.
    • (2015) Environ. Earth Sci. , vol.73 , pp. 8639-8646
    • Gelisli, K.1    Kaya, T.2    Babacan, A.E.3
  • 5
    • 84876334829 scopus 로고    scopus 로고
    • Earthquake prediction in seismogenic areas of the Iberian Peninsula based on computational intelligence
    • [5] Morales-Esteban, A., Martinez-Alvarez, F., Reyes, J., Earthquake prediction in seismogenic areas of the Iberian Peninsula based on computational intelligence. Tectonophysics 593 (2013), 121–134.
    • (2013) Tectonophysics , vol.593 , pp. 121-134
    • Morales-Esteban, A.1    Martinez-Alvarez, F.2    Reyes, J.3
  • 6
    • 84925046266 scopus 로고    scopus 로고
    • Machine-learning methods for earthquake ground motion analysis and simulation
    • 04014147
    • [6] Alimoradi, A., Beck, J., Machine-learning methods for earthquake ground motion analysis and simulation. J. Eng. Mech., 141, 2015, 04014147.
    • (2015) J. Eng. Mech. , vol.141
    • Alimoradi, A.1    Beck, J.2
  • 8
    • 84925582889 scopus 로고    scopus 로고
    • Prediction of Abrasiveness index of some Indian Rocks using soft computing methods
    • [8] Tripathy, A., Singh, T.N., Kundu, J., Prediction of Abrasiveness index of some Indian Rocks using soft computing methods. Measurement 68 (2015), 302–309.
    • (2015) Measurement , vol.68 , pp. 302-309
    • Tripathy, A.1    Singh, T.N.2    Kundu, J.3
  • 9
    • 84942198266 scopus 로고    scopus 로고
    • Prediction of strength parameters of Himalayan rocks: a statistical and ANFIS approach
    • [9] Kainthola, A., Singh, P.K., Verma, D., Singh, R., Sarkar, K., Singh, T.N., Prediction of strength parameters of Himalayan rocks: a statistical and ANFIS approach. Geotech. Geol. Eng. 33 (2015), 1255–1278.
    • (2015) Geotech. Geol. Eng. , vol.33 , pp. 1255-1278
    • Kainthola, A.1    Singh, P.K.2    Verma, D.3    Singh, R.4    Sarkar, K.5    Singh, T.N.6
  • 10
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • [10] Kumar, D.N., Srinivasa, K.R., Sathish, T., River flow forecasting using recurrent neural networks. Water Resour. Manag. 18 (2004), 143–161.
    • (2004) Water Resour. Manag. , vol.18 , pp. 143-161
    • Kumar, D.N.1    Srinivasa, K.R.2    Sathish, T.3
  • 11
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • [11] Huang, W., Xu, B., Chan-Hilton, A., Forecasting flows in Apalachicola River using neural networks. Hydrol. Process. 18 (2004), 2545–2564.
    • (2004) Hydrol. Process. , vol.18 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chan-Hilton, A.3
  • 12
    • 34548498867 scopus 로고    scopus 로고
    • Neural networks for real time catchment flow modeling and prediction
    • [12] Aqil, M., Kita, I., Yano, A., Nishiyama, S., Neural networks for real time catchment flow modeling and prediction. Water Resour. Manag. 21 (2007), 1781–1796.
    • (2007) Water Resour. Manag. , vol.21 , pp. 1781-1796
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 13
    • 84886728620 scopus 로고    scopus 로고
    • Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff
    • [13] Zounemat-Kermani, M., Kisi, O., Rajaee, T., Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Appl. Soft Comput. 13 (2013), 4633–4644.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4633-4644
    • Zounemat-Kermani, M.1    Kisi, O.2    Rajaee, T.3
  • 14
    • 84946056633 scopus 로고    scopus 로고
    • A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model
    • [14] Chen, X.Y., Chau, K.W., Busari, A.O., A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model. Eng. Appl. Artif. Intell. 46 (2015), 258–268.
    • (2015) Eng. Appl. Artif. Intell. , vol.46 , pp. 258-268
    • Chen, X.Y.1    Chau, K.W.2    Busari, A.O.3
  • 15
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • [15] Maity, R., Bhagwat, P.P., Bhatnagar, A., Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol. Process. 24 (2010), 917–923.
    • (2010) Hydrol. Process. , vol.24 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 16
    • 84904668338 scopus 로고    scopus 로고
    • Linear genetic programming application for successive-station monthly streamflow prediction
    • [16] Mehr, D., Kahya, E., Yerdelen, C., Linear genetic programming application for successive-station monthly streamflow prediction. Comput. Geosci. 70 (2014), 63–72.
    • (2014) Comput. Geosci. , vol.70 , pp. 63-72
    • Mehr, D.1    Kahya, E.2    Yerdelen, C.3
  • 17
    • 0035369390 scopus 로고    scopus 로고
    • Monthly runoff prediction using phase-space reconstruction
    • [17] Sivakumar, B., Berndtsson, R., Persson, M., Monthly runoff prediction using phase-space reconstruction. Hydrol. Sci. J. 46 (2001), 377–388.
    • (2001) Hydrol. Sci. J. , vol.46 , pp. 377-388
    • Sivakumar, B.1    Berndtsson, R.2    Persson, M.3
  • 18
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • [18] Sivakumar, B., Jayawardena, A.W., Fernando, T.M.K.G., River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265 (2002), 225–245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 19
    • 0003489163 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology
    • Springer
    • [19] Govindaraju, R.S., Rao, A.R., Artificial Neural Networks in Hydrology. 2013, Springer, 1–15.
    • (2013) , pp. 1-15
    • Govindaraju, R.S.1    Rao, A.R.2
  • 21
    • 4143114646 scopus 로고    scopus 로고
    • Application of TOPNET in the distributed model Intercomparison project
    • [21] Bandaragoda, C., Tarboton, D.G., Woods, R., Application of TOPNET in the distributed model Intercomparison project. J. Hydrol. 298 (2004), 178–201.
    • (2004) J. Hydrol. , vol.298 , pp. 178-201
    • Bandaragoda, C.1    Tarboton, D.G.2    Woods, R.3
  • 22
    • 78649632956 scopus 로고    scopus 로고
    • A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling
    • [22] Shen, C., Phanikumar, M.S., A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling. Adv. Water Res. 33 (2010), 1524–1541.
    • (2010) Adv. Water Res. , vol.33 , pp. 1524-1541
    • Shen, C.1    Phanikumar, M.S.2
  • 23
    • 0006972632 scopus 로고
    • Tank Model with Snow Component
    • The National Research Center for Disaster Prevention, Science and Technology Agency Japan
    • [23] Sugawara, M., Watanabe, E., Ozaki, E., Katsuyama, Y., Tank Model with Snow Component. 1984, The National Research Center for Disaster Prevention, Science and Technology Agency, Japan.
    • (1984)
    • Sugawara, M.1    Watanabe, E.2    Ozaki, E.3    Katsuyama, Y.4
  • 24
    • 0030483015 scopus 로고    scopus 로고
    • The ARNO rainfall-runoff model
    • [24] Todini, E., The ARNO rainfall-runoff model. J. Hydrol. 175 (1996), 339–382.
    • (1996) J. Hydrol. , vol.175 , pp. 339-382
    • Todini, E.1
  • 25
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • [25] Zealand, C.M., Burn, D.H., Simonović, S.P., Short term streamflow forecasting using artificial neural networks. J. Hydrol. 214 (1999), 32–48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonović, S.P.3
  • 26
    • 73149091872 scopus 로고    scopus 로고
    • Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region
    • [26] Akhtar, M., Ahmad, N., Booij, J., Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region. Hydrol. Earth Syst. Sci. 13 (2009), 1075–1089.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1075-1089
    • Akhtar, M.1    Ahmad, N.2    Booij, J.3
  • 28
    • 84930013928 scopus 로고    scopus 로고
    • Using reanalysis and remotely sensed temperature and precipitation data for hydrological modeling in monsoon climate: Mekong River case study
    • [28] Lauri, H., Rasanen, T.A., Kummu, M., Using reanalysis and remotely sensed temperature and precipitation data for hydrological modeling in monsoon climate: Mekong River case study. J. Hydrometeorol. 15 (2014), 1532–1545.
    • (2014) J. Hydrometeorol. , vol.15 , pp. 1532-1545
    • Lauri, H.1    Rasanen, T.A.2    Kummu, M.3
  • 29
    • 39749157693 scopus 로고    scopus 로고
    • Application of artificial neural networks for predicting the cuttability of rocks by drag tools
    • [29] Tiryaki, B., Application of artificial neural networks for predicting the cuttability of rocks by drag tools. Tunn. Undergr. Space Technol. 23 (2008), 273–280.
    • (2008) Tunn. Undergr. Space Technol. , vol.23 , pp. 273-280
    • Tiryaki, B.1
  • 30
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • [30] Lipmann, R.P., An introduction to computing with neural nets. IEEE ASSP Mag. 4 (1987), 4–22.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lipmann, R.P.1
  • 31
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • [31] Moradkhani, H, Hoshin, K.L.H., Gupta, V., Sorooshian, S., Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295 (2004), 246–262.
    • (2004) J. Hydrol. , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hoshin, K.L.H.2    Gupta, V.3    Sorooshian, S.4
  • 32
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: upper Siwane River, India
    • [32] Raghuwanshi, N., Singh, R., Reddy, L., Runoff and sediment yield modeling using artificial neural networks: upper Siwane River, India. J. Hydrol. Eng. 11 (2006), 71–79.
    • (2006) J. Hydrol. Eng. , vol.11 , pp. 71-79
    • Raghuwanshi, N.1    Singh, R.2    Reddy, L.3
  • 33
    • 77952241177 scopus 로고    scopus 로고
    • Advances in ungauged streamflow prediction using artificial neural networks
    • [33] Besaw, E.L., Rizzo, D.M., Bierman, P.R., Hackett, W.R., Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol. 386 (2010), 27–37.
    • (2010) J. Hydrol. , vol.386 , pp. 27-37
    • Besaw, E.L.1    Rizzo, D.M.2    Bierman, P.R.3    Hackett, W.R.4
  • 34
    • 84869504157 scopus 로고    scopus 로고
    • Discharge projection in the Yangtze River basin under different emission scenarios based on the artificial neural networks
    • [34] Zeng, X., Kundzewicz, Z.W., Zhou, J., Su, B., Discharge projection in the Yangtze River basin under different emission scenarios based on the artificial neural networks. Quat. Int. 282 (2012), 113–121.
    • (2012) Quat. Int. , vol.282 , pp. 113-121
    • Zeng, X.1    Kundzewicz, Z.W.2    Zhou, J.3    Su, B.4
  • 35
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • D.E. Rumelhart J.L. McCleland MIT Press Cambridge MA, USA
    • [35] Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representation by error propagation. Rumelhart, D.E., McCleland, J.L., (eds.) Parallel Distribution Processing, 1, 1986, MIT Press Cambridge, MA, USA, 318–362.
    • (1986) Parallel Distribution Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 36
    • 30344474020 scopus 로고    scopus 로고
    • Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation
    • [36] Sonmez, H., Gokceoglu, C., Nefeslioglu, H.A., Kayabasi, A., Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int. J. Rock Mech. Min. Sci. 43 (2006), 224–235.
    • (2006) Int. J. Rock Mech. Min. Sci. , vol.43 , pp. 224-235
    • Sonmez, H.1    Gokceoglu, C.2    Nefeslioglu, H.A.3    Kayabasi, A.4
  • 37
    • 0030121244 scopus 로고    scopus 로고
    • Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes
    • [37] Looney, C.G., Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes. IEEE Trans. Knowl. Data Eng. 8 (1996), 211–226.
    • (1996) IEEE Trans. Knowl. Data Eng. , vol.8 , pp. 211-226
    • Looney, C.G.1
  • 38
    • 0003768239 scopus 로고
    • A Practical Guide to Neural Nets
    • Addison-Wesley Reading MA
    • [38] Nelson, M., Illingworth, W.T., A Practical Guide to Neural Nets. 1990, Addison-Wesley, Reading MA.
    • (1990)
    • Nelson, M.1    Illingworth, W.T.2
  • 39
    • 85008915259 scopus 로고    scopus 로고
    • Basic hydrographics and hydrological characteristics of the Drina River basin and hydrometeorological data
    • (in Serbian)
    • [39] Prohaska, S., Simić, Z., Orlić, A., Basic hydrographics and hydrological characteristics of the Drina River basin and hydrometeorological data. Vodoprivreda 36 (2004), 21–38 (in Serbian).
    • (2004) Vodoprivreda , vol.36 , pp. 21-38
    • Prohaska, S.1    Simić, Z.2    Orlić, A.3
  • 40
    • 84979700385 scopus 로고
    • Republic Hydrometerological Service of Serbia. Hydro-meteorological yearbooks -2012 [].
    • [40] Republic Hydrometerological Service of Serbia. Hydro-meteorological yearbooks 1950-2012 [ http://www.hidmet.gov.rs/].
    • (1950)
  • 41
    • 47749120273 scopus 로고    scopus 로고
    • Verification of a coupled atmosphere-ocean model using satellite observations over the Adriatic Sea
    • [41] Đurđević, V., Rajković, B., Verification of a coupled atmosphere-ocean model using satellite observations over the Adriatic Sea. Ann. Geophys. 26 (2008), 1935–1954.
    • (2008) Ann. Geophys. , vol.26 , pp. 1935-1954
    • Đurđević, V.1    Rajković, B.2
  • 42
    • 33645161798 scopus 로고    scopus 로고
    • Long-term discharge prediction for the Turnu Severin station (the Danube) using a linear autoregressive model
    • [42] Pekarova, P., Pekar, J., Long-term discharge prediction for the Turnu Severin station (the Danube) using a linear autoregressive model. Hydrol. Process. 20 (2006), 1217–1228.
    • (2006) Hydrol. Process. , vol.20 , pp. 1217-1228
    • Pekarova, P.1    Pekar, J.2
  • 43
    • 31344440897 scopus 로고    scopus 로고
    • Oscillations in land surface hydrological cycle
    • [43] Labat, D., Oscillations in land surface hydrological cycle. Earth Planet. Sci. Lett. 242 (2006), 143–154.
    • (2006) Earth Planet. Sci. Lett. , vol.242 , pp. 143-154
    • Labat, D.1
  • 45
    • 1242315903 scopus 로고    scopus 로고
    • Effects of IPCC SRES emissions scenarios on the river runoff: a global perspective
    • [45] Arnell, N., Effects of IPCC SRES emissions scenarios on the river runoff: a global perspective. Hydrol. Earth Syst. Sci. 7 (2003), 619–641.
    • (2003) Hydrol. Earth Syst. Sci. , vol.7 , pp. 619-641
    • Arnell, N.1
  • 46
    • 84979648115 scopus 로고    scopus 로고
    • Danube Study – Climate Change Adaptation
    • International Commission for the Protection of the Danube River Final Report
    • [46] ICPDR, Danube Study – Climate Change Adaptation., 2012, International Commission for the Protection of the Danube River Final Report.
    • (2012)
    • ICPDR1
  • 47
    • 84979670428 scopus 로고    scopus 로고
    • Effects of Climate Change in the Kolubara and Toplica Catchments, Serbia. Norwegian Water Resources and Energy Directorate. Norway
    • [47] Haddeland, I., Effects of Climate Change in the Kolubara and Toplica Catchments, Serbia. Norwegian Water Resources and Energy Directorate. Norway., 2013.
    • (2013)
    • Haddeland, I.1
  • 48
    • 84893512410 scopus 로고    scopus 로고
    • Fifth Assessment Report (AR5)
    • Intergovernmental Panel on Climate Change Geneva 2. Switzerland
    • [48] IPCC, Fifth Assessment Report (AR5)., 2013, Intergovernmental Panel on Climate Change, Geneva 2. Switzerland http://www.ipcc.ch/report/ar5/index.shtml.
    • (2013)
    • IPCC1
  • 49
    • 84979708303 scopus 로고    scopus 로고
    • Water climate and adaptation plan for the Sava River basin
    • J. Plavšić World Bank Group Washington, D.C. Draft Final Report. Annex 1
    • [49] World Bank, Water climate and adaptation plan for the Sava River basin. Plavšić, J., (eds.) Development of the Hydrologic Model for the Sava River Basin, 2014, World Bank Group, Washington, D.C. Draft Final Report. Annex 1.
    • (2014) Development of the Hydrologic Model for the Sava River Basin
    • World Bank1
  • 50
    • 84979660489 scopus 로고    scopus 로고
    • Dataset of Hydro-energy Production at HPP ``Potpeć''
    • Bajina Bašta Serbia
    • [50] Report of hydroenergetic production, Dataset of Hydro-energy Production at HPP ``Potpeć''. 2009, Bajina Bašta, Serbia.
    • (2009)
    • Report of hydroenergetic production1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.