-
1
-
-
84880811612
-
Molecular cytogenetic map of the central bearded dragon Pogona vitticeps (Squamata: Agamidae)
-
Young MJ, O'Meally D, Sarre SD, Georges A, Ezaz T. Molecular cytogenetic map of the central bearded dragon Pogona vitticeps (Squamata: Agamidae). Chromosom Res. 2013;21:361-74
-
(2013)
Chromosom Res
, vol.21
, pp. 361-374
-
-
Young, M.J.1
O'Meally, D.2
Sarre, S.D.3
Georges, A.4
Ezaz, T.5
-
2
-
-
28844479703
-
The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes
-
Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Graves JAM. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosom Res. 2005;13:763-76
-
(2005)
Chromosom Res
, vol.13
, pp. 763-776
-
-
Ezaz, T.1
Quinn, A.E.2
Miura, I.3
Sarre, S.D.4
Georges, A.5
Graves, J.A.M.6
-
3
-
-
84937528549
-
Sex reversal triggers the rapid transition from genetic to temperature dependent sex
-
Holleley CE, O'Meally D, Sarre SD, Graves JAM, Ezaz T, Matsubara K, et al. Sex reversal triggers the rapid transition from genetic to temperature dependent sex. Nature. 2015;523:79-82
-
(2015)
Nature
, vol.523
, pp. 79-82
-
-
Holleley, C.E.1
O'Meally, D.2
Sarre, S.D.3
Graves, J.A.M.4
Ezaz, T.5
Matsubara, K.6
-
4
-
-
34247507591
-
Temperature sex reversal implies sex gene dosage in a reptile
-
Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JAM. Temperature sex reversal implies sex gene dosage in a reptile. Science. 2007;316:411
-
(2007)
Science
, vol.316
, pp. 411
-
-
Quinn, A.E.1
Georges, A.2
Sarre, S.D.3
Guarino, F.4
Ezaz, T.5
Graves, J.A.M.6
-
7
-
-
79952592810
-
A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
-
Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764-70
-
(2011)
Bioinformatics
, vol.27
, pp. 764-770
-
-
Marcais, G.1
Kingsford, C.2
-
8
-
-
75149155568
-
The sequence and de novo assembly of the giant panda genome
-
Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463:311-7
-
(2010)
Nature
, vol.463
, pp. 311-317
-
-
Li, R.1
Fan, W.2
Tian, G.3
Zhu, H.4
He, L.5
Cai, J.6
-
9
-
-
75649124547
-
De novo assembly of human genomes with massively parallel short read sequencing
-
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20:265-72
-
(2010)
Genome Res
, vol.20
, pp. 265-272
-
-
Li, R.1
Zhu, H.2
Ruan, J.3
Qian, W.4
Fang, X.5
Shi, Z.6
-
10
-
-
67649884743
-
Fast and accurate short read alignment with Burrows-Wheeler transform
-
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754-60
-
(2009)
Bioinformatics
, vol.25
, pp. 1754-1760
-
-
Li, H.1
Durbin, R.2
-
11
-
-
34249848751
-
CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes
-
Parra G, Bradnam K, Korf I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061-7
-
(2007)
Bioinformatics
, vol.23
, pp. 1061-1067
-
-
Parra, G.1
Bradnam, K.2
Korf, I.3
-
12
-
-
79960264362
-
Full-length transcriptome assembly from RNA-seq data without a reference genome
-
Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29:644-52
-
(2011)
Nat Biotechnol
, vol.29
, pp. 644-652
-
-
Grabherr, M.1
Haas, B.2
Yassour, M.3
Levin, J.4
Thompson, D.5
Amit, I.6
-
13
-
-
23844525077
-
Repbase Update, a database of eukaryotic repetitive elements
-
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462-7
-
(2005)
Cytogenet Genome Res
, vol.110
, pp. 462-467
-
-
Jurka, J.1
Kapitonov, V.V.2
Pavlicek, A.3
Klonowski, P.4
Kohany, O.5
Walichiewicz, J.6
-
14
-
-
77955368745
-
-
Institute for Systems Biology, Seattle, WA, USA. Accessed 20-Dec-14 2014
-
Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0 1996-2010. Institute for Systems Biology, Seattle, WA, USA. 1996. http://www.repeatmasker.org. Accessed 20-Dec-14 2014
-
(1996)
RepeatMasker Open-3.0 1996-2010
-
-
Smit, A.F.A.1
Hubley, R.2
Green, P.3
-
15
-
-
85006180620
-
-
RepeatModeler Open-1.0. 2008-2015, Institute for Systems Biology, Seattle, WA, USA. Accessed 20-Dec-2014 2014
-
Smit AFA, Hubley R. RepeatModeler Open-1.0. 2008-2015. . Institute for Systems Biology, Seattle, WA, USA. 2008. http://www.repeatmasker.org. Accessed 20-Dec-2014 2014
-
(2008)
-
-
Smit, A.F.A.1
Hubley, R.2
-
16
-
-
34547592867
-
LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons
-
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265-8
-
(2007)
Nucleic Acids Res
, vol.35
, pp. W265-W268
-
-
Xu, Z.1
Wang, H.2
-
17
-
-
0033555906
-
Tandem repeats finder: A program to analyze DNA sequences
-
Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573-80
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 573-580
-
-
Benson, G.1
-
19
-
-
2942527473
-
Gene prediction with a hidden Markov model and a new intron submodel
-
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19 Suppl 2:215-25
-
(2003)
Bioinformatics
, vol.19
, pp. 215-225
-
-
Stanke, M.1
Waack, S.2
-
20
-
-
65449136284
-
TopHat: discovering splice junctions with RNA-Seq
-
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105-11
-
(2009)
Bioinformatics
, vol.25
, pp. 1105-1111
-
-
Trapnell, C.1
Pachter, L.2
Salzberg, S.L.3
-
21
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511-5
-
(2010)
Nat Biotechnol
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
Mortazavi, A.4
Kwan, G.5
van Baren, M.J.6
-
22
-
-
77950901859
-
The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds
-
Ezaz T, Moritz B, Waters PD, Graves JAM, Georges A, Sarre SD. The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosom Res. 2009;17:965-73
-
(2009)
Chromosom Res
, vol.17
, pp. 965-973
-
-
Ezaz, T.1
Moritz, B.2
Waters, P.D.3
Graves, J.A.M.4
Georges, A.5
Sarre, S.D.6
-
23
-
-
77950077355
-
Extension, single-locus conversion and physical mapping of sex chromosome sequences identify the Z microchromosome and pseudo-autosomal region in a dragon lizard
-
Quinn AE, Ezaz T, Sarre SD, Graves JAM, Georges A. Extension, single-locus conversion and physical mapping of sex chromosome sequences identify the Z microchromosome and pseudo-autosomal region in a dragon lizard. Pogona vitticeps Heredity. 2010;104:410-7
-
(2010)
Pogona vitticeps Heredity
, vol.104
, pp. 410-417
-
-
Quinn, A.E.1
Ezaz, T.2
Sarre, S.D.3
Graves, J.A.M.4
Georges, A.5
-
24
-
-
84890284136
-
Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin1
-
Ezaz T, Azad B, O'Meally D, Young MJ, Matsubara K, Edwards MJ, et al. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin1. BMC Genomics. 2013;14:899
-
(2013)
BMC Genomics
, vol.14
, pp. 899
-
-
Ezaz, T.1
Azad, B.2
O'Meally, D.3
Young, M.J.4
Matsubara, K.5
Edwards, M.J.6
-
25
-
-
80053359585
-
The genome of the green anole lizard and a comparative analysis with birds and mammals
-
Alfoldi J, di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587-91
-
(2011)
Nature
, vol.477
, pp. 587-591
-
-
Alfoldi, J.1
di Palma, F.2
Grabherr, M.3
Williams, C.4
Kong, L.5
Mauceli, E.6
-
26
-
-
84890812848
-
The Burmese python genome reveals the molecular basis for extreme adaptation in snakes
-
Castoe T, de Koning A, Hall K, Card D, Schield D, Fujita M, et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013;110:20645-50
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 20645-20650
-
-
Castoe, T.1
de Koning, A.2
Hall, K.3
Card, D.4
Schield, D.5
Fujita, M.6
-
27
-
-
84890842764
-
The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system
-
Vonk F, Casewell N, Henkel C, Heimberg A, Jansen H, McCleary R, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651-6
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 20651-20656
-
-
Vonk, F.1
Casewell, N.2
Henkel, C.3
Heimberg, A.4
Jansen, H.5
McCleary, R.6
-
28
-
-
84879020737
-
The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage
-
Shaffer H, Minx P, Warren D, Shedlock A, Thomson R, Valenzuela N, et al. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 2013;14:R28
-
(2013)
Genome Biol
, vol.14
, pp. R28
-
-
Shaffer, H.1
Minx, P.2
Warren, D.3
Shedlock, A.4
Thomson, R.5
Valenzuela, N.6
-
29
-
-
84878729685
-
The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan
-
Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. 2013;45:701-6
-
(2013)
Nat Genet
, vol.45
, pp. 701-706
-
-
Wang, Z.1
Pascual-Anaya, J.2
Zadissa, A.3
Li, W.4
Niimura, Y.5
Huang, Z.6
-
30
-
-
84865022771
-
Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes
-
St John J, Braun E, Isberg S, Miles L, Chong A, Gongora J, et al. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol. 2012;13:415
-
(2012)
Genome Biol
, vol.13
, pp. 415
-
-
St John, J.1
Braun, E.2
Isberg, S.3
Miles, L.4
Chong, A.5
Gongora, J.6
-
31
-
-
0141596080
-
The dog genome: survey sequencing and comparative analysis
-
Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB, et al. The dog genome: survey sequencing and comparative analysis. Science. 2003;301:1898-903
-
(2003)
Science
, vol.301
, pp. 1898-1903
-
-
Kirkness, E.F.1
Bafna, V.2
Halpern, A.L.3
Levy, S.4
Remington, K.5
Rusch, D.B.6
-
32
-
-
77951823093
-
The genome of the Western clawed frog Xenopus tropicalis
-
Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. The genome of the Western clawed frog Xenopus tropicalis. Science. 2010;328:633-6
-
(2010)
Science
, vol.328
, pp. 633-636
-
-
Hellsten, U.1
Harland, R.M.2
Gilchrist, M.J.3
Hendrix, D.4
Jurka, J.5
Kapitonov, V.6
-
33
-
-
84856296604
-
The Anolis lizard genome: An amniote genome without isochores
-
Fujita MK, Edwards SV, Ponting CP. The Anolis lizard genome: An amniote genome without isochores. Genome Biol Evol. 2010;3:974-84
-
(2010)
Genome Biol Evol
, vol.3
, pp. 974-984
-
-
Fujita, M.K.1
Edwards, S.V.2
Ponting, C.P.3
-
34
-
-
85006192596
-
Genome of the Australian dragon lizard Pogona vitticeps
-
Georges A, Li Q, Lian J, O'Meally D, Deakin J, Wang Z et al. Genome of the Australian dragon lizard Pogona vitticeps. 2015. GigaScience Database. http://gigadb.org/dataset/100166
-
(2015)
GigaScience Database
-
-
Georges, A.1
Li, Q.2
Lian, J.3
O'Meally, D.4
Deakin, J.5
Wang, Z.6
-
35
-
-
85042222236
-
-
(pvi1.1 Jan 2013). Institute for Applied Ecology. Canberra: University of Canberra. Accessed 1-Sep-2015
-
Georges A, O'Meally D, Genomics@UC. The Pogona vitticeps genome browser (pvi1.1 Jan 2013). Institute for Applied Ecology. Canberra: University of Canberra; 2015. https://genomics.canberra.edu.au/. Accessed 1-Sep-2015
-
(2015)
The Pogona vitticeps genome browser
-
-
Georges, A.1
O'Meally, D.2
|