메뉴 건너뛰기




Volumn 37, Issue 17, 2016, Pages 4059-4083

Object-based urban structure type pattern recognition from Landsat TM with a Support Vector Machine

Author keywords

Haiti; Landsat; Machine learning; object based image analysis; urban structure types

Indexed keywords

ARTIFICIAL INTELLIGENCE; IMAGE ANALYSIS; IMAGE SEGMENTATION; LEARNING SYSTEMS; OPTICAL RADAR; PATTERN RECOGNITION; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 84979555836     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1207261     Document Type: Article
Times cited : (15)

References (39)
  • 5
    • 84923876879 scopus 로고    scopus 로고
    • A Review on Image Segmentation Techniques with Remote Sensing Perspective
    • Wagner W., Székely B., (eds), Vienna:
    • V.Dey,, Y.Zhang, and M.Zhong. 2010. “A Review on Image Segmentation Techniques with Remote Sensing Perspective.” In ISPRS TC VII Symposium – 100 Years ISPRS, edited by W.Wagner and B.Székely. Vienna: Institute of Photogrammetry and Remote Sensing, Vienna University of Technology.
    • (2010) ISPRS TC VII Symposium – 100 Years ISPRS
    • Dey, V.1    Zhang, Y.2    Zhong, M.3
  • 6
    • 33646023117 scopus 로고    scopus 로고
    • An Introduction to ROC Analysis
    • T.Fawcett, 2006. “An Introduction to ROC Analysis.” Pattern Recognition Letters 27 (8): 861–874. doi:10.1016/j.patrec.2005.10.010.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 8
    • 4544272407 scopus 로고    scopus 로고
    • Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification
    • G.M.Foody,, and A.Mathur. 2004. “Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification.” Remote Sensing of Environment 93 (1–2): 107–117. doi:10.1016/j.rse.2004.06.017.
    • (2004) Remote Sensing of Environment , vol.93 , Issue.1-2 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification Using Support Vector Machines
    • I.Guyon,, J.Weston, S.Barnhill, and V.Vapnik. 2002. “Gene Selection for Cancer Classification Using Support Vector Machines.” Machine Learning 46 (1/3): 389–422. doi:10.1023/A:1012487302797.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 0042421792 scopus 로고    scopus 로고
    • Spatial Metrics and Image Texture for Mapping Urban Land Use
    • M.Herold,, X.Liu, and K.C.Clarke. 2003. “Spatial Metrics and Image Texture for Mapping Urban Land Use.” Photogrammetric Engineering & Remote Sensing 69 (9): 991–1001. doi:10.14358/PERS.69.9.991.
    • (2003) Photogrammetric Engineering & Remote Sensing , vol.69 , Issue.9 , pp. 991-1001
    • Herold, M.1    Liu, X.2    Clarke, K.C.3
  • 15
    • 77957741951 scopus 로고
    • On the Mean Accuracy of Statistical Pattern Recognizers
    • G.Hughes, 1968. “On the Mean Accuracy of Statistical Pattern Recognizers.” IEEE Transactions on Information Theory 14 (1): 55–63. doi:10.1109/TIT.1968.1054102.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 16
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-Scale Approach
    • B.Johnson,, and Z.Xie. 2011. “Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-Scale Approach.” ISPRS Journal of Photogrammetry and Remote Sensing 66 (4): 473–483. doi:10.1016/j.isprsjprs.2011.02.006.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , Issue.4 , pp. 473-483
    • Johnson, B.1    Xie, Z.2
  • 17
    • 84992726552 scopus 로고
    • Estimating Attributes: Analysis and Extensions of Relief
    • I.Kononenko, 1994. “Estimating Attributes: Analysis and Extensions of Relief.” Lecture Notes in Computer Science 784: 171–182.
    • (1994) Lecture Notes in Computer Science , vol.784 , pp. 171-182
    • Kononenko, I.1
  • 18
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
    • C.Li,, J.Wang, L.Wang, L.Hu, and P.Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6 (2): 964–983. doi:10.3390/rs6020964.
    • (2014) Remote Sensing , vol.6 , Issue.2 , pp. 964-983
    • Li, C.1    Wang, J.2    Wang, L.3    Hu, L.4    Gong, P.5
  • 19
    • 84884514639 scopus 로고    scopus 로고
    • Impact of Feature Selection on the Accuracy and Spatial Uncertainty of per-Field Crop Classification Using Support Vector Machines
    • F.Löw,, U.Michel, S.Dech, and C.Conrad. 2013. “Impact of Feature Selection on the Accuracy and Spatial Uncertainty of per-Field Crop Classification Using Support Vector Machines.” ISPRS Journal of Photogrammetry and Remote Sensing 85: 102–119. doi:10.1016/j.isprsjprs.2013.08.007.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.85 , pp. 102-119
    • Löw, F.1    Michel, U.2    Dech, S.3    Conrad, C.4
  • 21
    • 84979635991 scopus 로고    scopus 로고
    • December
    • Open Topography.” 2015. Accessed December7. http://www.opentopography.org/index.php/blog/detail/haiti_lidar_imagery_in_google_earth
    • (2015)
  • 22
    • 84869488312 scopus 로고    scopus 로고
    • Evaluation of SVM, RVM and SMLR for Accurate Image Classification with Limited Ground Data
    • M.Pal,, and G.M.Foody. 2012. “Evaluation of SVM, RVM and SMLR for Accurate Image Classification with Limited Ground Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (5): 1344–1355. doi:10.1109/JSTARS.2012.2215310.
    • (2012) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.5 , Issue.5 , pp. 1344-1355
    • Pal, M.1    Foody, G.M.2
  • 23
    • 84908572688 scopus 로고    scopus 로고
    • Object-Based Image Classification of Summer Crops with Machine Learning Methods
    • J.Peña,, P.Gutiérrez, C.Hervás-Martínez, J.Six, R.Plant, and F.López-Granados. 2014. “Object-Based Image Classification of Summer Crops with Machine Learning Methods.” Remote Sensing 6 (6): 5019–5041. doi:10.3390/rs6065019.
    • (2014) Remote Sensing , vol.6 , Issue.6 , pp. 5019-5041
    • Peña, J.1    Gutiérrez, P.2    Hervás-Martínez, C.3    Six, J.4    Plant, R.5    López-Granados, F.6
  • 24
    • 84880623404 scopus 로고    scopus 로고
    • Toward a Rapid Probabilistic Seismic Vulnerability Assessment Using Satellite and Ground-Based Remote Sensing
    • M.Pittore,, and M.Wieland. 2013. “Toward a Rapid Probabilistic Seismic Vulnerability Assessment Using Satellite and Ground-Based Remote Sensing.” Natural Hazards 68 (1): 115–145. doi:10.1007/s11069-012-0475-z.
    • (2013) Natural Hazards , vol.68 , Issue.1 , pp. 115-145
    • Pittore, M.1    Wieland, M.2
  • 25
    • 84979580847 scopus 로고    scopus 로고
    • December
    • Plan de Prévention Séisme Pour Le Grand Nord.” 2015. Accessed December6. http://www.ht.undp.org/content/haiti/fr/home/operations/projects/crisis_prevention_and_recovery/plan-de-prevention-seisme-pour-le-grand-nord-dhaiti.html
    • (2015)
  • 26
    • 84979563956 scopus 로고    scopus 로고
    • December
    • Population of Haiti.” 2015. Accessed December6. http://www.citypopulation.de/Haiti.html
    • (2015)
  • 27
    • 84920812571 scopus 로고    scopus 로고
    • Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery
    • Y.Qian,, W.Zhou, J.Yan, W.Li, and L.Han. 2014. “Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery.” Remote Sensing 7 (1): 153–168. doi:10.3390/rs70100153.
    • (2014) Remote Sensing , vol.7 , Issue.1 , pp. 153-168
    • Qian, Y.1    Zhou, W.2    Yan, J.3    Li, W.4    Han, L.5
  • 28
    • 0023453329 scopus 로고
    • Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
    • P.J.Rousseeuw, 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis.” Journal of Computational and Applied Mathematics 20: 53–65. doi:10.1016/0377-0427(87)90125-7.
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 29
    • 84864044765 scopus 로고    scopus 로고
    • Monitoring Land Cover Change in Urban and Peri-Urban Areas Using Dense Time Stacks of Landsat Satellite Data and a Data Mining Approach
    • A.Schneider, 2012. “Monitoring Land Cover Change in Urban and Peri-Urban Areas Using Dense Time Stacks of Landsat Satellite Data and a Data Mining Approach.” Remote Sensing of Environment 124: 689–704. doi:10.1016/j.rse.2012.06.006.
    • (2012) Remote Sensing of Environment , vol.124 , pp. 689-704
    • Schneider, A.1
  • 30
    • 84979538745 scopus 로고    scopus 로고
    • January
    • Scikit-Learn.” 2015. Accessed January8. http://scikit-learn.org
    • (2015)
  • 31
    • 0035141621 scopus 로고    scopus 로고
    • Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?
    • C.Song,, C.E.Woodcock, K.C.Seto, M.P.Lenney, and S.A.Macomber. 2001. “Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?” Remote Sensing of Environment 75 (2): 230–244. doi:10.1016/S0034-4257(00)00169-3.
    • (2001) Remote Sensing of Environment , vol.75 , Issue.2 , pp. 230-244
    • Song, C.1    Woodcock, C.E.2    Seto, K.C.3    Lenney, M.P.4    Macomber, S.A.5
  • 32
    • 0000565591 scopus 로고
    • A Computer Movie Simulating Urban Growth in the Detroit Region
    • W.Tobler, 1970. “A Computer Movie Simulating Urban Growth in the Detroit Region.” Economic Geography 46 (2): 234–240. doi:10.2307/143141.
    • (1970) Economic Geography , vol.46 , Issue.2 , pp. 234-240
    • Tobler, W.1
  • 34
    • 84979518851 scopus 로고    scopus 로고
    • January
    • USGS Earthexplorer.” 2015. Accessed January5. http://earthexplorer.usgs.gov/
    • (2015)
  • 36
    • 1442275185 scopus 로고    scopus 로고
    • Learning When Training Data Are Costly: The Effect of Class Distribution on Tree Induction
    • G.M.Weiss,, and F.Provost. 2003. “Learning When Training Data Are Costly: The Effect of Class Distribution on Tree Induction.” Journal of Artificial Intelligence Research 19: 315–354.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 37
    • 84979551826 scopus 로고    scopus 로고
    • October
    • WEKA3 Data Mining with Open Source Machine Learning Software.” 2012. Accessed October29. http://www.cs.waikato.ac.nz/ml/weka/
    • (2012)
  • 38
    • 84898072545 scopus 로고    scopus 로고
    • Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images
    • M.Wieland,, and M.Pittore. 2014. “Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images.” Remote Sensing 6 (4): 2912–2939. doi:10.3390/rs6042912.
    • (2014) Remote Sensing , vol.6 , Issue.4 , pp. 2912-2939
    • Wieland, M.1    Pittore, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.