메뉴 건너뛰기




Volumn 37, Issue 1-2, 2013, Pages 276-292

Hard competitive growing neural network for the diagnosis of small bearing faults

Author keywords

Bearing diagnosis; Envelope analysis; HC GNN; Neural networks; Wavelet transform

Indexed keywords

CLASSIFICATION ACCURACY; ENVELOPE ANALYSIS; HC-GNN; NETWORK STRUCTURES; PROBABILISTIC NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; STRUCTURE DETERMINATION; WEIGHTED FEATURE SELECTION;

EID: 84876947364     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2012.11.002     Document Type: Article
Times cited : (28)

References (41)
  • 1
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • X. Lou, and K.A. Loparo Bearing fault diagnosis based on wavelet transform and fuzzy inference Mech. Syst. Sig. Process. 18 2004 1077 1095
    • (2004) Mech. Syst. Sig. Process. , vol.18 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 2
    • 0036862592 scopus 로고    scopus 로고
    • Singularity analysis using continuous wavelet transform for bearing fault diagnosis
    • Q. Sun, and Y. Tang Singularity analysis using continuous wavelet transform for bearing fault diagnosis Mech. Syst. Sig. Process. 16 6 2002 1025 1041
    • (2002) Mech. Syst. Sig. Process. , vol.16 , Issue.6 , pp. 1025-1041
    • Sun, Q.1    Tang, Y.2
  • 3
    • 0034297837 scopus 로고    scopus 로고
    • Neural-network based motor rolling bearing fault diagnosis
    • B. Li, M.-Y. Chow, Y. Tipsuwan, and J. Hung Neural-network based motor rolling bearing fault diagnosis, IEEE Trans. Ind. Electron. 47 5 Oct. 2000 1060 1069
    • (2000) IEEE Trans. Ind. Electron. , vol.47 , Issue.5 , pp. 1060-1069
    • Li, B.1    Chow, M.-Y.2    Tipsuwan, Y.3    Hung, J.4
  • 4
    • 0033336360 scopus 로고    scopus 로고
    • A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
    • N Tandon, and A. Choudhury A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings Tribol. Int. 32 7 1999 469 480
    • (1999) Tribol. Int. , vol.32 , Issue.7 , pp. 469-480
    • Tandon, N.1    Choudhury, A.2
  • 5
    • 33646816778 scopus 로고    scopus 로고
    • Fault classification on vibration data with wavelet based feature selection scheme
    • GG Yen, and WF. Leong Fault classification on vibration data with wavelet based feature selection scheme ISA Trans. 45 2 2006 141 151
    • (2006) ISA Trans. , vol.45 , Issue.2 , pp. 141-151
    • Yen, G.G.1    Leong, W.F.2
  • 6
    • 4344709627 scopus 로고    scopus 로고
    • Unsupervised angular re-sampling and noise cancellation for planetary bearing fault diagnosis
    • F. Bonnardot, R. Randall, and J. Antoni Unsupervised angular re-sampling and noise cancellation for planetary bearing fault diagnosis Int. J. Acoust. Vibr. 9 2 2004
    • (2004) Int. J. Acoust. Vibr. , vol.9 , Issue.2
    • Bonnardot, F.1    Randall, R.2    Antoni, J.3
  • 7
    • 17644390236 scopus 로고    scopus 로고
    • Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation)
    • F. Bonnardot, M. El Badaoui, R. Randall, J Daniere, and F. Guillet Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation) Mech. Syst. Sig. Process. 19 2005 766 785
    • (2005) Mech. Syst. Sig. Process. , vol.19 , pp. 766-785
    • Bonnardot, F.1    El Badaoui, M.2    Randall, R.3    Daniere, J.4    Guillet, F.5
  • 8
    • 0036999130 scopus 로고    scopus 로고
    • Effective vibration analysis of engines using cyclostationnarity: Part I. A methodology for condition monitoring
    • J. Antoni, J. Daniere, and F. Guillet Effective vibration analysis of engines using cyclostationnarity: Part I. A methodology for condition monitoring J. Sound Vib. 257 2002 815 837
    • (2002) J. Sound Vib. , vol.257 , pp. 815-837
    • Antoni, J.1    Daniere, J.2    Guillet, F.3
  • 9
    • 78650401367 scopus 로고    scopus 로고
    • Bearing fault feature extraction by recurrence quantification analysis
    • G. Rajesh, and M.V. Rajesh Bearing fault feature extraction by recurrence quantification analysis, World Acad. Sci., Eng. Technol. 45 2008 448 452
    • (2008) World Acad. Sci., Eng. Technol. , vol.45 , pp. 448-452
    • Rajesh, G.1    Rajesh, M.V.2
  • 11
    • 0012020346 scopus 로고    scopus 로고
    • Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-Their effectiveness and flexibilities
    • Peter.W. Tse, P.W. Peng, and Y.H. Yam Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-Their effectiveness and flexibilities J. Vib. Acoust. 123 3 2001 303 310
    • (2001) J. Vib. Acoust. , vol.123 , Issue.3 , pp. 303-310
    • Tse, Peter.W.1    Peng, P.W.2    Yam, Y.H.3
  • 12
    • 0040833844 scopus 로고
    • Diagnosing rolling element bearing faults with artificial neural networks
    • D. Baillie, and J. Mathew Diagnosing rolling element bearing faults with artificial neural networks Acoustics Australia 22 3 1994 79 84
    • (1994) Acoustics Australia , vol.22 , Issue.3 , pp. 79-84
    • Baillie, D.1    Mathew, J.2
  • 14
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • B. Samanta, K.R. Al-Baulshi, and S.A. Al-Araimi Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection Eng. Appl. Artif. Intell. 16 2003 657 665
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Baulshi, K.R.2    Al-Araimi, S.A.3
  • 15
    • 84876947494 scopus 로고    scopus 로고
    • Growing neural networks using soft competitive learning
    • May
    • Vikas C., Anil K. Ahlawat, and R.S. Bhatia Growing neural networks using soft competitive learning Int. J. Comput. Appl. 21 3 2011 May
    • (2011) Int. J. Comput. Appl. , vol.21 , Issue.3
    • Vikas, C.1    Ahlawat, A.K.2    Bhatia, R.S.3
  • 16
    • 80053303819 scopus 로고    scopus 로고
    • Self adaptive growing neural network classifier for faults detection and diagnosis
    • M. Barakat, F. Druaux, D. Lefebvre, M. Khalil, and O. Mustapha Self adaptive growing neural network classifier for faults detection and diagnosis Neurocomput. J. Elsevier 74 2011 3865 3876
    • (2011) Neurocomput. J. Elsevier , vol.74 , pp. 3865-3876
    • Barakat, M.1    Druaux, F.2    Lefebvre, D.3    Khalil, M.4    Mustapha, O.5
  • 17
    • 84877744884 scopus 로고    scopus 로고
    • Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues
    • 10.1007/s13042-012-0089-5
    • M. Barakat, D. Lefebvre, M. Khalil, F. Druaux, and O. Mustapha Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues Int. J. Mach. Learn. Cybern. 2012 10.1007/s13042-012-0089-5
    • (2012) Int. J. Mach. Learn. Cybern.
    • Barakat, M.1    Lefebvre, D.2    Khalil, M.3    Druaux, F.4    Mustapha, O.5
  • 18
    • 0034227864 scopus 로고    scopus 로고
    • Probabilistic neural-network structure determination for pattern classification
    • K.Z. Mao, K.-C. Tan, W. Ser, Probabilistic neural-network structure determination for pattern classification, IEEE Trans. Neural Networks, 11, 4, 1009-1016.
    • IEEE Trans. Neural Networks , vol.11 , Issue.4 , pp. 1009-1016
    • Mao, K.Z.1    Tan, K.-C.2    Ser, W.3
  • 19
    • 0042193470 scopus 로고    scopus 로고
    • Structural fault diagnosis and isolation using neural networks based on response-only data
    • Q. Chen, Y.W. Chan, and K. Worden Structural fault diagnosis and isolation using neural networks based on response-only data Comput. Struct. 81 2003 2165 2172
    • (2003) Comput. Struct. , vol.81 , pp. 2165-2172
    • Chen, Q.1    Chan, Y.W.2    Worden, K.3
  • 20
    • 33747881516 scopus 로고    scopus 로고
    • Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition
    • E. Frias-Martinez, A. Sanchez, and J. Velez Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition Eng. Appl. Artif. Intell. 19 2006 693 704
    • (2006) Eng. Appl. Artif. Intell. , vol.19 , pp. 693-704
    • Frias-Martinez, E.1    Sanchez, A.2    Velez, J.3
  • 24
    • 0037302970 scopus 로고    scopus 로고
    • Basic vibration signal processing for bearing fault detection
    • S.A. McInerny, and Y. Dai Basic vibration signal processing for bearing fault detection IEEE Trans. Educ. 46 1 2003 149 156
    • (2003) IEEE Trans. Educ. , vol.46 , Issue.1 , pp. 149-156
    • McInerny, S.A.1    Dai, Y.2
  • 25
    • 33751524350 scopus 로고    scopus 로고
    • Envelope bearing analysis: Theory and practice
    • D. Hochmann, and E. Bechhoefer Envelope bearing analysis: theory and practice Proc. Aerosp. 2005 1518 1531
    • (2005) Proc. Aerosp. , pp. 1518-1531
    • Hochmann, D.1    Bechhoefer, E.2
  • 27
    • 2942561579 scopus 로고    scopus 로고
    • Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural network
    • D.M. Yang, A.F. Stronach, and P. MacConnel Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural network Mech. Syst. Sig. Process. 16 2-3 2002 391 411
    • (2002) Mech. Syst. Sig. Process. , vol.16 , Issue.23 , pp. 391-411
    • Yang, D.M.1    Stronach, A.F.2    Macconnel, P.3
  • 28
    • 0019094381 scopus 로고
    • A critical evaluation of intrinsic dimensionality algorithms
    • N. Wyse, R. Dubes, and A.K. Jain A critical evaluation of intrinsic dimensionality algorithms Pattern Recognit. Pract. 1980 415 425
    • (1980) Pattern Recognit. Pract. , pp. 415-425
    • Wyse, N.1    Dubes, R.2    Jain, A.K.3
  • 30
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • A. Malhi, and R. Gao PCA-based feature selection scheme for machine defect classification IEEE Trans. Instrum. Meas. 53 2004 1517 1525
    • (2004) IEEE Trans. Instrum. Meas. , vol.53 , pp. 1517-1525
    • Malhi, A.1    Gao, R.2
  • 31
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
    • A. Widodo, B.-S. Yang, and T. Han Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors Expert Syst. Appl. 32 2 2007 299 312
    • (2007) Expert Syst. Appl. , vol.32 , Issue.2 , pp. 299-312
    • Widodo, A.1    Yang, B.-S.2    Han, T.3
  • 33
    • 64049098473 scopus 로고    scopus 로고
    • Zi, Application of an intelligent classification method to mechanical fault diagnosis
    • Zhengjia Yaguo Lei, and Yanyang He Zi, Application of an intelligent classification method to mechanical fault diagnosis Expert Syst. Appl. 36 2009 9941 9948
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9941-9948
    • Yaguo Lei, Z.1    He, Y.2
  • 34
    • 0023347370 scopus 로고
    • Strategies for diagnosis
    • R. Milne Strategies for diagnosis IEEE Trans. Syst. Man Cybern. 17 3 1987 333 339
    • (1987) IEEE Trans. Syst. Man Cybern. , vol.17 , Issue.3 , pp. 333-339
    • Milne, R.1
  • 35
    • 84887014107 scopus 로고    scopus 로고
    • Self organising map for large scale processes monitoring
    • E. Leclercq, F. Druaux, and D. Lefebvre Self organising map for large scale processes monitoring Proc. ESANN 2009
    • (2009) Proc. ESANN
    • Leclercq, E.1    Druaux, F.2    Lefebvre, D.3
  • 37
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim, and T.G. Dietterich Learning boolean concepts in the presence of many irrelevant features Artif. Intell. 69 1-2 1994 279 305
    • (1994) Artif. Intell. , vol.69 , Issue.12 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 38
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A.L. Blum, and P. Langley Selection of relevant features and examples in machine learning Artif. Intell. 97 1997 245 271
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 40
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J.E. Moody, and J.E Darken Fast learning in networks of locally-tuned processing units Neural Comput. 1 1989 281 294
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.E.1    Darken, J.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.