메뉴 건너뛰기




Volumn 67, Issue 9, 2014, Pages 1025-1034

The Hospital-patient One-year Mortality Risk score accurately predicted long-term death risk in hospitalized patients

Author keywords

Administrative data; Calibration; Discrimination; Hospitalization; Mortality; Multivariable logistic regression; Risk index; Risk model; Risk score; Survival

Indexed keywords

ADMINISTRATIVE DATA; CALIBRATION; DISCRIMINATION; HOSPITALIZATION; MORTALITY; MULTIVARIABLE LOGISTIC REGRESSION; RISK INDEX; RISK MODEL; RISK SCORE; SURVIVAL;

EID: 84905124533     PISSN: 08954356     EISSN: 18785921     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2014.05.003     Document Type: Article
Times cited : (36)

References (32)
  • 1
    • 0033823960 scopus 로고    scopus 로고
    • Survival prediction in terminal cancer patients: A systematic review of the medical literature
    • A. Vigano, M. Dorgan, J. Buckingham, E. Bruera, and M.E. Suarez-Almazor Survival prediction in terminal cancer patients: a systematic review of the medical literature Palliat Med 14 2000 363 374
    • (2000) Palliat Med , vol.14 , pp. 363-374
    • Vigano, A.1    Dorgan, M.2    Buckingham, J.3    Bruera, E.4    Suarez-Almazor, M.E.5
  • 3
    • 34548256854 scopus 로고    scopus 로고
    • Survival prediction in terminally ill cancer patients by clinical estimates, laboratory tests, and self-rated anxiety and depression
    • S. Gripp, S. Moeller, E. Bölke, G. Schmitt, C. Matuschek, and S. Asgari et al. Survival prediction in terminally ill cancer patients by clinical estimates, laboratory tests, and self-rated anxiety and depression J Clin Oncol 25 2007 3313 3320
    • (2007) J Clin Oncol , vol.25 , pp. 3313-3320
    • Gripp, S.1    Moeller, S.2    Bölke, E.3    Schmitt, G.4    Matuschek, C.5    Asgari, S.6
  • 4
    • 0034685236 scopus 로고    scopus 로고
    • Extent and determinants of error in doctors' prognoses in terminally ill patients: Prospective cohort study
    • N.A. Christakis, and E.B. Lamont Extent and determinants of error in doctors' prognoses in terminally ill patients: prospective cohort study BMJ 320 2000 469 472
    • (2000) BMJ , vol.320 , pp. 469-472
    • Christakis, N.A.1    Lamont, E.B.2
  • 5
    • 0041669352 scopus 로고    scopus 로고
    • A systematic review of physicians' survival predictions in terminally ill cancer patients
    • G. Paul, V. Kiran, J. Mark, H. Malcolm, E. Steffen, and S. John et al. A systematic review of physicians' survival predictions in terminally ill cancer patients BMJ 327 2003 195 198
    • (2003) BMJ , vol.327 , pp. 195-198
    • Paul, G.1    Kiran, V.2    Mark, J.3    Malcolm, H.4    Steffen, E.5    John, S.6
  • 6
    • 0031046321 scopus 로고    scopus 로고
    • Measuring the accuracy of prognostic judgments in oncology
    • W.J. Mackillop, and C.F. Quirt Measuring the accuracy of prognostic judgments in oncology J Clin Epidemiol 50 1997 21 29
    • (1997) J Clin Epidemiol , vol.50 , pp. 21-29
    • Mackillop, W.J.1    Quirt, C.F.2
  • 7
    • 0030892967 scopus 로고    scopus 로고
    • Physicians' survival predictions for patients with acute congestive heart failure
    • R.M. Poses, W.R. Smith, and D.K. McClish Physicians' survival predictions for patients with acute congestive heart failure Arch Intern Med 157 1997 1001 1007
    • (1997) Arch Intern Med , vol.157 , pp. 1001-1007
    • Poses, R.M.1    Smith, W.R.2    McClish, D.K.3
  • 8
    • 0022619614 scopus 로고
    • Providers as predictors: Using outcome predictions in intensive care
    • H.S. Perkins, A.R. Jonsen, and W.V. Epstein Providers as predictors: using outcome predictions in intensive care Crit Care Med 14 1986 105 114
    • (1986) Crit Care Med , vol.14 , pp. 105-114
    • Perkins, H.S.1    Jonsen, A.R.2    Epstein, W.V.3
  • 9
    • 42449097690 scopus 로고    scopus 로고
    • Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases
    • G.J. Escobar, J.D. Greene, P. Scheirer, M.N. Gardner, D. Draper, and P. Kipnis Risk-adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases Med Care 46 2008 232 239
    • (2008) Med Care , vol.46 , pp. 232-239
    • Escobar, G.J.1    Greene, J.D.2    Scheirer, P.3    Gardner, M.N.4    Draper, D.5    Kipnis, P.6
  • 10
    • 33846021262 scopus 로고    scopus 로고
    • Enhancement of claims data to improve risk adjustment of hospital mortality
    • M. Pine, H.S. Jordan, A. Elixhauser, D.E. Fry, D.C. Hoaglin, and B. Jones et al. Enhancement of claims data to improve risk adjustment of hospital mortality JAMA 297 2007 71 76
    • (2007) JAMA , vol.297 , pp. 71-76
    • Pine, M.1    Jordan, H.S.2    Elixhauser, A.3    Fry, D.E.4    Hoaglin, D.C.5    Jones, B.6
  • 11
    • 0037791848 scopus 로고    scopus 로고
    • Automated intensive care unit risk adjustment: Results from a National Veterans Affairs study
    • VA ICU Project (VIP) Investigators
    • M.L. Render, H.M. Kim, D.E. Welsh, S. Timmons, J. Johnston, S. Hui VA ICU Project (VIP) Investigators Automated intensive care unit risk adjustment: results from a National Veterans Affairs study Crit Care Med 31 2003 1638 1646
    • (2003) Crit Care Med , vol.31 , pp. 1638-1646
    • Render, M.L.1    Kim, H.M.2    Welsh, D.E.3    Timmons, S.4    Johnston, J.5    Hui, S.6
  • 12
    • 80052951912 scopus 로고    scopus 로고
    • The Mortality Risk Score and the ADG Score: Two points-based scoring systems for the Johns Hopkins Aggregated Diagnosis Groups to predict mortality in a general adult population cohort in Ontario, Canada
    • P.C. Austin, and C. van Walraven The Mortality Risk Score and the ADG Score: two points-based scoring systems for the Johns Hopkins Aggregated Diagnosis Groups to predict mortality in a general adult population cohort in Ontario, Canada Med Care 49 2011 940 947
    • (2011) Med Care , vol.49 , pp. 940-947
    • Austin, P.C.1    Van Walraven, C.2
  • 13
    • 80052926364 scopus 로고    scopus 로고
    • Using the Johns Hopkins Aggregated Diagnosis Groups (ADGs) to predict mortality in a general adult population cohort in Ontario, Canada
    • P.C. Austin, C. van Walraven, W.P. Wodchis, A. Newman, and G.M. Anderson Using the Johns Hopkins Aggregated Diagnosis Groups (ADGs) to predict mortality in a general adult population cohort in Ontario, Canada Med Care 49 2011 932 939
    • (2011) Med Care , vol.49 , pp. 932-939
    • Austin, P.C.1    Van Walraven, C.2    Wodchis, W.P.3    Newman, A.4    Anderson, G.M.5
  • 14
    • 0025779766 scopus 로고
    • Ambulatory care groups: A categorization of diagnoses for research and management
    • B. Starfield, J. Weiner, L. Mumford, and D. Steinwachs Ambulatory care groups: a categorization of diagnoses for research and management Health Serv Res 26 1991 53 74
    • (1991) Health Serv Res , vol.26 , pp. 53-74
    • Starfield, B.1    Weiner, J.2    Mumford, L.3    Steinwachs, D.4
  • 15
    • 0344420330 scopus 로고    scopus 로고
    • Predicting mortality among patients hospitalized for heart failure: Derivation and validation of a clinical model
    • D.S. Lee, P.C. Austin, J.L. Rouleau, P.P. Liu, D. Naimark, and J.V. Tu Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model JAMA 290 2003 2581 2587
    • (2003) JAMA , vol.290 , pp. 2581-2587
    • Lee, D.S.1    Austin, P.C.2    Rouleau, J.L.3    Liu, P.P.4    Naimark, D.5    Tu, J.V.6
  • 16
    • 81255141744 scopus 로고    scopus 로고
    • Predicting long-term mortality in older patients after non ST-segment elevation myocardial infarction: The CRUSADE long-term mortality model and risk score
    • M.T. Roe, A.Y. Chen, L. Thomas, T.Y. Wang, K.P. Alexander, and B.G. Hammill et al. Predicting long-term mortality in older patients after non ST-segment elevation myocardial infarction: the CRUSADE long-term mortality model and risk score Am Heart J 162 2011 875 883
    • (2011) Am Heart J , vol.162 , pp. 875-883
    • Roe, M.T.1    Chen, A.Y.2    Thomas, L.3    Wang, T.Y.4    Alexander, K.P.5    Hammill, B.G.6
  • 17
    • 48649086352 scopus 로고    scopus 로고
    • A prospective study of health and risk of mortality after spinal cord injury
    • J.S. Krause, R.E. Carter, E.E. Pickelsimer, and D. Wilson A prospective study of health and risk of mortality after spinal cord injury Arch Phys Med Rehabil 89 2008 1482 1491
    • (2008) Arch Phys Med Rehabil , vol.89 , pp. 1482-1491
    • Krause, J.S.1    Carter, R.E.2    Pickelsimer, E.E.3    Wilson, D.4
  • 18
    • 0023092594 scopus 로고
    • A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation
    • M.E. Charlson, P. Pompei, K.L. Ales, and C.R. MacKenzie A new method of classifying prognostic comorbidity in longitudinal studies: development and validation J Chronic Dis 40 1987 373 383
    • (1987) J Chronic Dis , vol.40 , pp. 373-383
    • Charlson, M.E.1    Pompei, P.2    Ales, K.L.3    Mackenzie, C.R.4
  • 19
    • 27744568384 scopus 로고    scopus 로고
    • Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data
    • H. Quan, V. Sundararajan, P. Halfon, A. Fong, B. Burnand, and J.C. Luthi et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data Med Care 43 2005 1130 1139
    • (2005) Med Care , vol.43 , pp. 1130-1139
    • Quan, H.1    Sundararajan, V.2    Halfon, P.3    Fong, A.4    Burnand, B.5    Luthi, J.C.6
  • 20
    • 0042858411 scopus 로고    scopus 로고
    • Improved comorbidity adjustment for predicting mortality in Medicare populations
    • S. Schneeweiss, P.S. Wang, J. Avorn, and R.J. Glynn Improved comorbidity adjustment for predicting mortality in Medicare populations Health Serv Res 38 2003 1103 1120
    • (2003) Health Serv Res , vol.38 , pp. 1103-1120
    • Schneeweiss, S.1    Wang, P.S.2    Avorn, J.3    Glynn, R.J.4
  • 21
    • 0033474286 scopus 로고    scopus 로고
    • Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials
    • W. Sauerbrei, and P. Royston Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials J R Stat Soc Ser A 162 1999 71 94
    • (1999) J R Stat Soc ser A , vol.162 , pp. 71-94
    • Sauerbrei, W.1    Royston, P.2
  • 22
    • 33646921786 scopus 로고    scopus 로고
    • Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs
    • W. Sauerbrei, C. Meier-Hirmer, A. Benner, and P. Royston Multivariable regression model building by using fractional polynomials: description of SAS, STATA and R programs Comput Stat Data Anal 50 2006 3464 3485
    • (2006) Comput Stat Data Anal , vol.50 , pp. 3464-3485
    • Sauerbrei, W.1    Meier-Hirmer, C.2    Benner, A.3    Royston, P.4
  • 24
    • 0035143755 scopus 로고    scopus 로고
    • SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores
    • D.K. Richardson, J.D. Corcoran, G.J. Escobar, and S.K. Lee SNAP-II and SNAPPE-II: simplified newborn illness severity and mortality risk scores J Pediatr 138 2001 92 100
    • (2001) J Pediatr , vol.138 , pp. 92-100
    • Richardson, D.K.1    Corcoran, J.D.2    Escobar, G.J.3    Lee, S.K.4
  • 25
    • 2442682859 scopus 로고    scopus 로고
    • Presentation of multivariate data for clinical use: The Framingham study risk score functions
    • L.M. Sullivan, J.M. Massaro, and R.B. D'Agostino Sr. Presentation of multivariate data for clinical use: the Framingham study risk score functions Stat Med 23 2004 1631 1660
    • (2004) Stat Med , vol.23 , pp. 1631-1660
    • Sullivan, L.M.1    Massaro, J.M.2    D'Agostino, Sr.R.B.3
  • 26
    • 0030063940 scopus 로고    scopus 로고
    • A reader's guide to the evaluation of prognostic studies
    • C. van Walraven, and P.C. Hebert A reader's guide to the evaluation of prognostic studies Postgrad Med J 72 1996 6 11
    • (1996) Postgrad Med J , vol.72 , pp. 6-11
    • Van Walraven, C.1    Hebert, P.C.2
  • 27
    • 0033013499 scopus 로고    scopus 로고
    • A comparison of the Charlson comorbidity index derived from medical record data and administrative billing data
    • S.M. Kieszak, W.D. Flanders, A.S. Kosinski, C.C. Shipp, and H. Karp A comparison of the Charlson comorbidity index derived from medical record data and administrative billing data J Clin Epidemiol 52 1999 137 142
    • (1999) J Clin Epidemiol , vol.52 , pp. 137-142
    • Kieszak, S.M.1    Flanders, W.D.2    Kosinski, A.S.3    Shipp, C.C.4    Karp, H.5
  • 28
    • 4043056671 scopus 로고    scopus 로고
    • Validity of procedure codes in International Classification of Diseases, 9th revision, clinical modification administrative data
    • H. Quan, G.A. Parsons, and W.A. Ghali Validity of procedure codes in International Classification of Diseases, 9th revision, clinical modification administrative data Med Care 42 2004 801 809
    • (2004) Med Care , vol.42 , pp. 801-809
    • Quan, H.1    Parsons, G.A.2    Ghali, W.A.3
  • 29
    • 33644878739 scopus 로고    scopus 로고
    • Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients
    • Candesartan in Heart Failure Reduction in Mortality (CHARM) Investigators
    • S.D. Solomon, N. Anavekar, H. Skali, J.J.V. McMurray, K. Swedberg, S. Yusuf Candesartan in Heart Failure Reduction in Mortality (CHARM) Investigators Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients Circulation 112 2005 3738 3744
    • (2005) Circulation , vol.112 , pp. 3738-3744
    • Solomon, S.D.1    Anavekar, N.2    Skali, H.3    McMurray, J.J.V.4    Swedberg, K.5    Yusuf, S.6
  • 30
    • 0018776388 scopus 로고
    • Predictors of mortality in chronic obstructive pulmonary disease. A 15-year follow-up study
    • G.A. Traver, M.G. Cline, and B. Burrows Predictors of mortality in chronic obstructive pulmonary disease. A 15-year follow-up study Am Rev Respir Dis 119 1979 895 902
    • (1979) Am Rev Respir Dis , vol.119 , pp. 895-902
    • Traver, G.A.1    Cline, M.G.2    Burrows, B.3
  • 31
    • 84866331506 scopus 로고    scopus 로고
    • Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization
    • A.G. Au, F.A. McAlister, J.A. Bakal, J. Ezekowitz, P. Kaul, and C. van Walraven Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization Am Heart J 164 2012 365 372
    • (2012) Am Heart J , vol.164 , pp. 365-372
    • Au, A.G.1    McAlister, F.A.2    Bakal, J.A.3    Ezekowitz, J.4    Kaul, P.5    Van Walraven, C.6
  • 32
    • 84867800882 scopus 로고    scopus 로고
    • Predicting readmissions: Poor performance of the LACE index in an older UK population
    • P.E. Cotter, V.K. Bhalla, S.J. Wallis, and R.W.S. Biram Predicting readmissions: poor performance of the LACE index in an older UK population Age Ageing 41 2012 784 789
    • (2012) Age Ageing , vol.41 , pp. 784-789
    • Cotter, P.E.1    Bhalla, V.K.2    Wallis, S.J.3    Biram, R.W.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.