-
1
-
-
84866336112
-
Fighting cancer with nanoparticle medicines—the nanoscale matters
-
COI: 1:CAS:528:DC%2BC38XhsFags7rP
-
Davis ME (2012) Fighting cancer with nanoparticle medicines—the nanoscale matters. MRS Bull 37:828–835. doi:10.1557/mrs.2012.202
-
(2012)
MRS Bull
, vol.37
, pp. 828-835
-
-
Davis, M.E.1
-
2
-
-
40449092935
-
Beyond drug delivery
-
COI: 1:CAS:528:DC%2BD1cXivFKgsbc%3D
-
Ferrari M (2008) Beyond drug delivery. Nat Nanotechnol 3:131–132. doi:10.1038/nnano.2008.46
-
(2008)
Nat Nanotechnol
, vol.3
, pp. 131-132
-
-
Ferrari, M.1
-
3
-
-
84858638371
-
Nanomedicine
-
COI: 1:CAS:528:DC%2BC38Xjs1Cks7s%3D
-
Caruso F, Hyeon T, Rotello VM (2012) Nanomedicine. Chem Soc Rev 41:2537–2538. doi:10.1039/c2cs90005j
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2537-2538
-
-
Caruso, F.1
Hyeon, T.2
Rotello, V.M.3
-
4
-
-
77955175216
-
Strategies in the design of nanoparticles for therapeutic applications
-
COI: 1:CAS:528:DC%2BC3cXosFeltbk%3D
-
Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627. doi:10.1038/nrd2591
-
(2010)
Nat Rev Drug Discov
, vol.9
, pp. 615-627
-
-
Petros, R.A.1
DeSimone, J.M.2
-
5
-
-
67649980012
-
Nanofunctional materials in cancer research: challenges, novel methods, and emerging applications
-
Nagahara LA, Ferrari M, Grodzinski P (2009) Nanofunctional materials in cancer research: challenges, novel methods, and emerging applications. MRS Bull 34:406–408. doi:10.1557/mrs2009.116
-
(2009)
MRS Bull
, vol.34
, pp. 406-408
-
-
Nagahara, L.A.1
Ferrari, M.2
Grodzinski, P.3
-
6
-
-
0041846627
-
Applications of magnetic nanoparticles in biomedicine
-
COI: 1:CAS:528:DC%2BD3sXlvVChs78%3D
-
Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 36:R167–R181. doi:10.1088/0022-3727/36/13/201
-
(2003)
J Phys D-Appl Phys
, vol.36
, pp. R167-R181
-
-
Pankhurst, Q.A.1
Connolly, J.2
Jones, S.K.3
Dobson, J.4
-
7
-
-
70450214847
-
Progress in applications of magnetic nanoparticles in biomedicine
-
Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 42:224001. doi:10.1088/0022-3727/42/22/224001
-
(2009)
J Phys D-Appl Phys
, vol.42
, pp. 224001
-
-
Pankhurst, Q.A.1
Thanh, N.T.K.2
Jones, S.K.3
Dobson, J.4
-
8
-
-
84906937882
-
Magnetic polymer nanocomposites for environmental and biomedical applications
-
COI: 1:CAS:528:DC%2BC2cXhtlWmu7fK
-
Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292:2025–2052. doi:10.1007/s00396-014-3357-y
-
(2014)
Colloid Polym Sci
, vol.292
, pp. 2025-2052
-
-
Kalia, S.1
Kango, S.2
Kumar, A.3
Haldorai, Y.4
Kumari, B.5
Kumar, R.6
-
9
-
-
34250334381
-
Thermoresponsive magnetic colloids
-
COI: 1:CAS:528:DC%2BD2sXmt1Srtr4%3D
-
Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966. doi:10.1007/s00396-007-1667-z
-
(2007)
Colloid Polym Sci
, vol.285
, pp. 953-966
-
-
Schmidt, A.M.1
-
10
-
-
49749181861
-
Inductive heating
-
Northrup EF (1926) Inductive heating. J Franklin Inst 201:221–244. doi:10.1016/s0016-0032(26)90811-9
-
(1926)
J Franklin Inst
, vol.201
, pp. 221-244
-
-
Northrup, E.F.1
-
11
-
-
84988541643
-
On the theory of inductive heating
-
Strutt MJO (1927) On the theory of inductive heating. Annalen Der Physik 82:0605–0617
-
(1927)
Annalen Der Physik
, vol.82
, pp. 0605-0617
-
-
Strutt, M.J.O.1
-
12
-
-
0017192915
-
Microwaves, magnetic iron particles and lasers as a combined test model for investigation of hyperthermia treatment of cancer
-
COI: 1:STN:280:DyaE2s%2Fos1ehtg%3D%3D
-
Goldman L, Dreffer R (1976) Microwaves, magnetic iron particles and lasers as a combined test model for investigation of hyperthermia treatment of cancer. Arch Dermatol Res 257:227–232
-
(1976)
Arch Dermatol Res
, vol.257
, pp. 227-232
-
-
Goldman, L.1
Dreffer, R.2
-
13
-
-
0018771157
-
Chemotherapy of unresectable or recurrent metastatic malignant melanomas: an update
-
COI: 1:STN:280:DyaE1M7htVWgtg%3D%3D
-
Block JB, Tabbarah H, Isacoff W, Drakes TP (1979) Chemotherapy of unresectable or recurrent metastatic malignant melanomas: an update. J Dermatol Surg Onc 5:118–123. doi:10.1111/j.1524-4725.1979.tb00624.x
-
(1979)
J Dermatol Surg Onc
, vol.5
, pp. 118-123
-
-
Block, J.B.1
Tabbarah, H.2
Isacoff, W.3
Drakes, T.P.4
-
14
-
-
84957606426
-
Selective inductive heating of lymph nodes
-
COI: 1:STN:280:DyaG1c%2FhtlChug%3D%3D
-
Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606. doi:10.1097/00000658-195710000-00007
-
(1957)
Ann Surg
, vol.146
, pp. 596-606
-
-
Gilchrist, R.K.1
Medal, R.2
Shorey, W.D.3
Hanselman, R.C.4
Parrott, J.C.5
Taylor, C.B.6
-
15
-
-
0014160208
-
The removal of biologic tissue by means of inductive heating
-
COI: 1:STN:280:DyaF1c%2FkvVymuw%3D%3D
-
Riechert T, Gabriel E, Asai A (1967) The removal of biologic tissue by means of inductive heating. Acta Neurochir 16:299–300
-
(1967)
Acta Neurochir
, vol.16
, pp. 299-300
-
-
Riechert, T.1
Gabriel, E.2
Asai, A.3
-
16
-
-
59349093225
-
Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses
-
Lacroix LM, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses. J Appl Phys 105:023911. doi:10.1063/1.3068195
-
(2009)
J Appl Phys
, vol.105
, pp. 023911
-
-
Lacroix, L.M.1
Malaki, R.B.2
Carrey, J.3
Lachaize, S.4
Respaud, M.5
Goya, G.F.6
Chaudret, B.7
-
17
-
-
84888395801
-
Heating efficiency in magnetic nanoparticle hyperthermia
-
COI: 1:CAS:528:DC%2BC2cXltlWn
-
Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172. doi:10.1016/j.jmmm.2013.11.006
-
(2014)
J Magn Magn Mater
, vol.354
, pp. 163-172
-
-
Deatsch, A.E.1
Evans, B.A.2
-
18
-
-
45849089916
-
Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia
-
COI: 1:CAS:528:DC%2BD1cXnvVKgtr8%3D
-
Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396. doi:10.1016/j.jmmm.2008.05.023
-
(2008)
J Magn Magn Mater
, vol.320
, pp. 2390-2396
-
-
Kim, D.H.1
Nikles, D.E.2
Johnson, D.T.3
Brazel, C.S.4
-
19
-
-
84988587028
-
Effect of concentration on heating efficiency of magnetic nanoparticles for application in magnetic hyperthermia
-
Deatsch AE, Evans BA (2013) Effect of concentration on heating efficiency of magnetic nanoparticles for application in magnetic hyperthermia. Biophys J 104:674A–674A. doi:10.1016/j.jmmm.2013.11.006
-
(2013)
Biophys J
, vol.104
, pp. 674A
-
-
Deatsch, A.E.1
Evans, B.A.2
-
20
-
-
0021285972
-
Usable frequencies in hyperthermia with thermal seeds
-
COI: 1:STN:280:DyaL2c3htVKkuw%3D%3D
-
Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 31:70–75. doi:10.1109/tbme.1984.325372
-
(1984)
IEEE Trans Biomed Eng
, vol.31
, pp. 70-75
-
-
Atkinson, W.J.1
Brezovich, I.A.2
Chakraborty, D.P.3
-
21
-
-
79959978260
-
Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
-
COI: 1:CAS:528:DC%2BC3MXotlCntbc%3D
-
Laurent S, Dutz S, Hafeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Inteface Colloid Sci 166:8–23. doi:10.1016/j.cis.2011.04.003
-
(2011)
Adv Inteface Colloid Sci
, vol.166
, pp. 8-23
-
-
Laurent, S.1
Dutz, S.2
Hafeli, U.O.3
Mahmoudi, M.4
-
22
-
-
0008798786
-
Effect of an oblique magnetic field on the superparamagnetic relaxation time
-
COI: 1:CAS:528:DyaK2MXhtVSkt7nJ
-
Coffey WT, Crothers DSF, Dormann JL, Geoghegan LJ, Kalmykov YP, Waldron JT, Wickstead AW (1995) Effect of an oblique magnetic field on the superparamagnetic relaxation time. Phys Rev B 52:15951–15965. doi:10.1103/PhysRevB.52.15951
-
(1995)
Phys Rev B
, vol.52
, pp. 15951-15965
-
-
Coffey, W.T.1
Crothers, D.S.F.2
Dormann, J.L.3
Geoghegan, L.J.4
Kalmykov, Y.P.5
Waldron, J.T.6
Wickstead, A.W.7
-
23
-
-
0029632727
-
The effect of an oblique magnetic-field on the superparamagnetic relaxation-time
-
COI: 1:CAS:528:DyaK2MXkvFKiurk%3D
-
Coffey WT, Crothers DSF, Dormann JL, Geoghegan LJ, Kalmykov YP, Waldron JT, Wickstead AW (1995) The effect of an oblique magnetic-field on the superparamagnetic relaxation-time. J Magn Magn Mater 145:L263–L267. doi:10.1016/0304-8853(94)00863-9
-
(1995)
J Magn Magn Mater
, vol.145
, pp. L263-L267
-
-
Coffey, W.T.1
Crothers, D.S.F.2
Dormann, J.L.3
Geoghegan, L.J.4
Kalmykov, Y.P.5
Waldron, J.T.6
Wickstead, A.W.7
-
24
-
-
33749848824
-
Constant-magnetic-field effect in Neel relaxation of single-domain ferromagnetic particles
-
COI: 1:CAS:528:DyaK2MXmtlWhsro%3D
-
Coffey WT, Crothers DSF, Kalmykov YP, Waldron JT (1995) Constant-magnetic-field effect in Neel relaxation of single-domain ferromagnetic particles. Phys Rev B 51:15947–15956. doi:10.1103/PhysRevB.51.15947
-
(1995)
Phys Rev B
, vol.51
, pp. 15947-15956
-
-
Coffey, W.T.1
Crothers, D.S.F.2
Kalmykov, Y.P.3
Waldron, J.T.4
-
25
-
-
85042582637
-
Magnetic properties of magnetic nanoparticles for efficient hyperthermia
-
Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89. doi:10.3390/nano5010063
-
(2015)
Nanomaterials
, vol.5
, pp. 63-89
-
-
Obaidat, I.M.1
Issa, B.2
Haik, Y.3
-
26
-
-
0001647844
-
Magnetic properties of nanostructured materials
-
COI: 1:CAS:528:DyaK28XksFahs7o%3D
-
Leslie Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783. doi:10.1021/cm960077f
-
(1996)
Chem Mater
, vol.8
, pp. 1770-1783
-
-
Leslie Pelecky, D.L.1
Rieke, R.D.2
-
27
-
-
1142291733
-
Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia
-
COI: 1:CAS:528:DC%2BD2cXht1altL4%3D
-
Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357. doi:10.1016/j.jmmm.2003.09.001
-
(2004)
J Magn Magn Mater
, vol.270
, pp. 345-357
-
-
Hergt, R.1
Hiergeist, R.2
Hilger, I.3
Kaiser, W.A.4
Lapatnikov, Y.5
Margel, S.6
Richter, U.7
-
28
-
-
0012262743
-
Heating magnetic fluid with alternating magnetic field
-
COI: 1:CAS:528:DC%2BD38XovFSlt7o%3D
-
Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374. doi:10.1016/s0304-8853(02)00706-0
-
(2002)
J Magn Magn Mater
, vol.252
, pp. 370-374
-
-
Rosensweig, R.E.1
-
29
-
-
84924787560
-
Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles
-
COI: 1:CAS:528:DC%2BC2MXosVKns7c%3D
-
Ruta S, Chantrell R, Hovorka O (2015) Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci Rep 5:9090. doi:10.1038/srep09090
-
(2015)
Sci Rep
, vol.5
, pp. 9090
-
-
Ruta, S.1
Chantrell, R.2
Hovorka, O.3
-
30
-
-
77949903841
-
Validity limits of the Neel relaxation model of magnetic nanoparticles for hyperthermia
-
Hergt R, Dutz S, Zeisberger M (2010) Validity limits of the Neel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnol 21:015706. doi:10.1088/0957-4484/21/1/015706
-
(2010)
Nanotechnol
, vol.21
, pp. 015706
-
-
Hergt, R.1
Dutz, S.2
Zeisberger, M.3
-
31
-
-
84887896318
-
Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy
-
Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 29:790–800. doi:10.3109/02656736.2013.822993
-
(2013)
Int J Hyperthermia
, vol.29
, pp. 790-800
-
-
Dutz, S.1
Hergt, R.2
-
32
-
-
84908299661
-
Magnetic particle hyperthermia—a promising tumour therapy?
-
Dutz S, Hergt R (2014) Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 25:452001. doi:10.1088/0957-4484/25/45/452001
-
(2014)
Nanotechnology
, vol.25
, pp. 452001
-
-
Dutz, S.1
Hergt, R.2
-
33
-
-
84859205535
-
Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles
-
COI: 1:CAS:528:DC%2BC38Xmt1WrtL4%3D
-
Bakoglidis KD, Simeonidis K, Sakellari D, Stefanou G, Angelakeris M (2012) Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans Magn 48:1320–1323. doi:10.1109/tmag.2011.2173474
-
(2012)
IEEE Trans Magn
, vol.48
, pp. 1320-1323
-
-
Bakoglidis, K.D.1
Simeonidis, K.2
Sakellari, D.3
Stefanou, G.4
Angelakeris, M.5
-
34
-
-
80053473224
-
An analysis of minor hysteresis loops of nanoparticles for hyperthermia
-
Roca AG, Vallejo-Fernandez G, O’Grady K (2011) An analysis of minor hysteresis loops of nanoparticles for hyperthermia. IEEE Trans Magn 47:2878–2881. doi:10.1109/tmag.2011.2157112
-
(2011)
IEEE Trans Magn
, vol.47
, pp. 2878-2881
-
-
Roca, A.G.1
Vallejo-Fernandez, G.2
O’Grady, K.3
-
35
-
-
82555192613
-
Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study
-
COI: 1:CAS:528:DC%2BC3MXhtleqsLfP
-
Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21:4573–4581. doi:10.1002/adfm.201101243
-
(2011)
Adv Funct Mater
, vol.21
, pp. 4573-4581
-
-
Mehdaoui, B.1
Meffre, A.2
Carrey, J.3
Lachaize, S.4
Lacroix, L.-M.5
Gougeon, M.6
Chaudret, B.7
Respaud, M.8
-
36
-
-
33847723425
-
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia
-
COI: 1:CAS:528:DC%2BD2sXhtlemtrc%3D
-
Fortin J-P, Wilhelm C, Servais J, Menager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635. doi:10.1021/ja067457e
-
(2007)
J Am Chem Soc
, vol.129
, pp. 2628-2635
-
-
Fortin, J.-P.1
Wilhelm, C.2
Servais, J.3
Menager, C.4
Bacri, J.-C.5
Gazeau, F.6
-
37
-
-
64749101605
-
Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia
-
COI: 1:CAS:528:DC%2BD1MXltVWhtbs%3D
-
Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950. doi:10.1016/j.jmmm.2008.12.017
-
(2009)
J Magn Magn Mater
, vol.321
, pp. 1947-1950
-
-
Gonzales-Weimuller, M.1
Zeisberger, M.2
Krishnan, K.M.3
-
38
-
-
18144415415
-
The heating effect of magnetic fluids in an alternating magnetic field
-
COI: 1:CAS:528:DC%2BD2MXktVags74%3D
-
Wang XM, Gu HC, Yang ZQ (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293:334–340. doi:10.1016/j.jmmm.2005.02.028
-
(2005)
J Magn Magn Mater
, vol.293
, pp. 334-340
-
-
Wang, X.M.1
Gu, H.C.2
Yang, Z.Q.3
-
39
-
-
84952690925
-
Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation
-
COI: 1:CAS:528:DC%2BC2MXhvVGiu7fI
-
Guibert C, Dupuis V, Peyre V, Fresnais J (2015) Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C 119:28148–28154. doi:10.1021/acs.jpcc.5b07796
-
(2015)
J Phys Chem C
, vol.119
, pp. 28148-28154
-
-
Guibert, C.1
Dupuis, V.2
Peyre, V.3
Fresnais, J.4
-
40
-
-
0019541337
-
Preparation of aqueous magnetic liquids in alkaline and acidic media
-
Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T Magn 17:1247–1248. doi:10.1109/tmag.1981.1061188
-
(1981)
IEEE T Magn
, vol.17
, pp. 1247-1248
-
-
Massart, R.1
-
41
-
-
34248365633
-
An experimental method for the measurement of the stability of concentrated magnetic fluids
-
COI: 1:CAS:528:DC%2BD2sXlsFans74%3D
-
Iglesias GR, Ruiz-Moron LF, Insa Monesma J, Duran JDG, Delgado AV (2007) An experimental method for the measurement of the stability of concentrated magnetic fluids. J Colloid Interf Sci 311:475–480. doi:10.1016/j.jcis.2007.03.063
-
(2007)
J Colloid Interf Sci
, vol.311
, pp. 475-480
-
-
Iglesias, G.R.1
Ruiz-Moron, L.F.2
Insa Monesma, J.3
Duran, J.D.G.4
Delgado, A.V.5
-
42
-
-
84856041516
-
The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles
-
Pineiro-Redondo Y, Banobre-Lopez M, Pardinas-Blanco I, Goya G, Lopez-Quintela MA, Rivas J (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383. doi:10.1186/1556-276x-6-383
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 383
-
-
Pineiro-Redondo, Y.1
Banobre-Lopez, M.2
Pardinas-Blanco, I.3
Goya, G.4
Lopez-Quintela, M.A.5
Rivas, J.6
|