-
1
-
-
0041846627
-
Applications of magnetic nanoparticles in biomedicine
-
Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167-R181 (2003).
-
(2003)
J. Phys. D: Appl. Phys.
, vol.36
, pp. R167-R181
-
-
Pankhurst, Q.A.1
Connolly, J.2
Jones, S.K.3
Dobson, J.4
-
2
-
-
47249140441
-
Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
-
Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 108 2064-110 (2008).
-
(2008)
Chem Rev.
, vol.108
, pp. 2064-2110
-
-
Laurent, S.1
-
3
-
-
84861123819
-
Biological applications of magnetic nanoparticles
-
Colombo, M. et al. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306-34 (2012).
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 4306-4334
-
-
Colombo, M.1
-
4
-
-
84883146836
-
Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications
-
Martinez-Boubeta, C. et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 1652
-
-
Martinez-Boubeta, C.1
-
5
-
-
54749116265
-
Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia
-
Hergt, R., Dutz, S. & Röder, M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J. Phys.: Condens. Matter 20, 385214 (2008).
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 385214
-
-
Hergt, R.1
Dutz, S.2
Röder, M.3
-
6
-
-
84859740865
-
Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternatingmagnetic fields
-
Mamiya, H. & Jeyadevan, B. Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternatingmagnetic fields. Sci. Rep. 1, 157 (2011).
-
(2011)
Sci. Rep.
, vol.1
, pp. 157
-
-
Mamiya, H.1
Jeyadevan, B.2
-
7
-
-
84885369060
-
Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia
-
Branquinho, L. C. et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3, 2887 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 2887
-
-
Branquinho, L.C.1
-
8
-
-
64249143013
-
Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia
-
Suto, M. et al.Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493-1496 (2009).
-
(2009)
J. Magn. Magn. Mater.
, vol.321
, pp. 1493-1496
-
-
Suto, M.1
-
9
-
-
84863504958
-
Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations
-
Verde, E. L., Landi, G. T., Gomes, J. A., Sousa, M. H. & Bakuzis, A. F. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J. Appl. Phys. 111, 123902 (2012).
-
(2012)
J. Appl. Phys.
, vol.111
, pp. 123902
-
-
Verde, E.L.1
Landi, G.T.2
Gomes, J.A.3
Sousa, M.H.4
Bakuzis, A.F.5
-
11
-
-
70350705223
-
-
John Wiley & Sons, Inc., New Jersey
-
Cullity, B. D. & Graham, C. D. Introduction to Magnetic Materials, (John Wiley & Sons, Inc., New Jersey, 2008).
-
(2008)
Introduction to Magnetic Materials
-
-
Cullity, B.D.1
Graham, C.D.2
-
13
-
-
0012262743
-
Heating magnetic fluid with alternating magnetic field
-
Rosensweig, R. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370-374 (2002).
-
(2002)
J. Magn. Magn. Mater.
, vol.252
, pp. 370-374
-
-
Rosensweig, R.1
-
14
-
-
84885597632
-
Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications
-
Vallejo-Fernandez, G. & O'Grady, K. Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications. Appl. Phys. Lett. 103, 142417 (2013).
-
(2013)
Appl. Phys. Lett.
, vol.103
, pp. 142417
-
-
Vallejo-Fernandez, G.1
O'Grady, K.2
-
15
-
-
33749513171
-
Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy
-
Hergt, R., Dutz, S., Müller, R. & Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter 18, S2919-S2934 (2006).
-
(2006)
J. Phys.: Condens. Matter
, vol.18
, pp. S2919-S2934
-
-
Hergt, R.1
Dutz, S.2
Müller, R.3
Zeisberger, M.4
-
16
-
-
84865733423
-
Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core-Shell Nanoparticles by Tuning Dipole-Dipole Interactions
-
Martinez-Boubeta, C. et al. Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core-Shell Nanoparticles by Tuning Dipole-Dipole Interactions. Adv. Funct. Mater. 22, 3737-3744 (2012).
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 3737-3744
-
-
Martinez-Boubeta, C.1
-
17
-
-
85015478766
-
Optimization of magnetic anisotropy and applied fields for hyperthermia applications
-
Sohn, H. & Victora, R. H. Optimization of magnetic anisotropy and applied fields for hyperthermia applications. J. Appl. Phys. 107, 09B312 (2010).
-
(2010)
J. Appl. Phys.
, vol.107
, pp. 09B312
-
-
Sohn, H.1
Victora, R.H.2
-
18
-
-
82555192613
-
Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study
-
Mehdaoui, B. et al. Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 21, 4573-4581 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 4573-4581
-
-
Mehdaoui, B.1
-
19
-
-
77958159320
-
Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles
-
Serantes, D. Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J. Appl. Phys. 108, 073918 (2010).
-
(2010)
J. Appl. Phys.
, vol.108
, pp. 073918
-
-
Serantes, D.1
-
20
-
-
84896280538
-
Nonlinear simulations to optimize magnetic nanoparticle hyperthermia
-
Reeves, D. B. & Weaver, J. B. Nonlinear simulations to optimize magnetic nanoparticle hyperthermia. Appl. Phys. Lett. 104, 102403 (2014).
-
(2014)
Appl. Phys. Lett.
, vol.104
, pp. 102403
-
-
Reeves, D.B.1
Weaver, J.B.2
-
21
-
-
84897824266
-
Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling
-
Serantes, D. et al.Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. J. Phys. Chem. C 118, 5927-5934 (2014).
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 5927-5934
-
-
Serantes, D.1
-
22
-
-
84892924833
-
Role of dipolar interaction in magnetic hyperthermia
-
Landi, G. T. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B 89, 014403 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 014403
-
-
Landi, G.T.1
-
23
-
-
84856508259
-
Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles
-
Jan
-
Haase, C. & Nowak, U. Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys. Rev. B 85(4), 045435 (Jan. 2012).
-
(2012)
Phys. Rev. B
, vol.85
, Issue.4
, pp. 045435
-
-
Haase, C.1
Nowak, U.2
-
24
-
-
79955706870
-
Simple models of dynamic hystereis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
-
Carrey, J., Mehdaoui, B. & Respaud, M. Simple models of dynamic hystereis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys 109, 083921 (2011).
-
(2011)
J. Appl. Phys
, vol.109
, pp. 083921
-
-
Carrey, J.1
Mehdaoui, B.2
Respaud, M.3
-
25
-
-
84918773246
-
Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power
-
Tan, R. P., Carrey, J. & Respaud, M. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys. Rev. B 90, 214421 (2014).
-
(2014)
Phys. Rev. B
, vol.90
, pp. 214421
-
-
Tan, R.P.1
Carrey, J.2
Respaud, M.3
-
26
-
-
0035124376
-
Calculations of the susceptibility of interacting superparamagnetic particles
-
Chantrell, R., Walmsley, N., Gore, J. & Maylin, M. Calculations of the susceptibility of interacting superparamagnetic particles. Phys. Rev. B 63, 024410 (2000).
-
(2000)
Phys. Rev. B
, vol.63
, pp. 024410
-
-
Chantrell, R.1
Walmsley, N.2
Gore, J.3
Maylin, M.4
-
27
-
-
0000326632
-
Monte Carlo simulation with time step quantification in terms of Langevin dynamics
-
Nowak, U., Chantrell, R. & Kennedy, E. Monte Carlo simulation with time step quantification in terms of Langevin dynamics. Phys. Rev. Lett. 84, 163-166 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 163-166
-
-
Nowak, U.1
Chantrell, R.2
Kennedy, E.3
-
28
-
-
84924791119
-
-
note
-
It is worthwhile pointing out that the M(H) behavior in the dynamical response theory regime resembles a hysteresis loop. However, this kind of hysteresis is of dynamical character and essentially associated with 'inertial' phase lag between M and H, and is fundamentally different from the type of hysteresis associated with metastability.
-
-
-
-
29
-
-
84897885982
-
Role of geometrical symmetry in thermally activated processes in clusters of interacting dipolar moments
-
Hovorka, O., Barker, J., Friedman, G. & Chantrell, R. Role of geometrical symmetry in thermally activated processes in clusters of interacting dipolar moments. Phys. Rev. B 89, 9 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 9
-
-
Hovorka, O.1
Barker, J.2
Friedman, G.3
Chantrell, R.4
-
30
-
-
33947149071
-
Magnetic particle hyperthermiabiophysical limitations of a visionary tumour therapy
-
Hergt, R. & Dutz, S. Magnetic particle hyperthermiabiophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187-192 (2007).
-
(2007)
J. Magn. Magn. Mater.
, vol.311
, pp. 187-192
-
-
Hergt, R.1
Dutz, S.2
-
31
-
-
0036573664
-
Computational model of the magnetic and transport properties of interacting fine particles
-
Verdes, C. Ruiz-Diaz, B., Thompson, S., Chantrell, R. &Stancu, A. Computational model of the magnetic and transport properties of interacting fine particles. Phys. Rev. B 65, 174417 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 174417
-
-
Verdes, C.1
Ruiz-Diaz, B.2
Thompson, S.3
Chantrell, R.4
Stancu, A.5
-
32
-
-
0003088679
-
Theórie du traînage magnétique des ferromagné tiques en grains fins avec applications aux terres cuites
-
Nél, L. Theórie du traînage magnétique des ferromagné tiques en grains fins avec applications aux terres cuites. Ann. geóphys (1949).
-
(1949)
Ann. Geóphys
-
-
Nél, L.1
|