메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84924787560     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep09090     Document Type: Article
Times cited : (185)

References (32)
  • 2
    • 47249140441 scopus 로고    scopus 로고
    • Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
    • Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 108 2064-110 (2008).
    • (2008) Chem Rev. , vol.108 , pp. 2064-2110
    • Laurent, S.1
  • 3
    • 84861123819 scopus 로고    scopus 로고
    • Biological applications of magnetic nanoparticles
    • Colombo, M. et al. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306-34 (2012).
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 4306-4334
    • Colombo, M.1
  • 4
    • 84883146836 scopus 로고    scopus 로고
    • Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications
    • Martinez-Boubeta, C. et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 1652
    • Martinez-Boubeta, C.1
  • 5
    • 54749116265 scopus 로고    scopus 로고
    • Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia
    • Hergt, R., Dutz, S. & Röder, M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J. Phys.: Condens. Matter 20, 385214 (2008).
    • (2008) J. Phys.: Condens. Matter , vol.20 , pp. 385214
    • Hergt, R.1    Dutz, S.2    Röder, M.3
  • 6
    • 84859740865 scopus 로고    scopus 로고
    • Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternatingmagnetic fields
    • Mamiya, H. & Jeyadevan, B. Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternatingmagnetic fields. Sci. Rep. 1, 157 (2011).
    • (2011) Sci. Rep. , vol.1 , pp. 157
    • Mamiya, H.1    Jeyadevan, B.2
  • 7
    • 84885369060 scopus 로고    scopus 로고
    • Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia
    • Branquinho, L. C. et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3, 2887 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 2887
    • Branquinho, L.C.1
  • 8
    • 64249143013 scopus 로고    scopus 로고
    • Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia
    • Suto, M. et al.Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493-1496 (2009).
    • (2009) J. Magn. Magn. Mater. , vol.321 , pp. 1493-1496
    • Suto, M.1
  • 9
    • 84863504958 scopus 로고    scopus 로고
    • Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations
    • Verde, E. L., Landi, G. T., Gomes, J. A., Sousa, M. H. & Bakuzis, A. F. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J. Appl. Phys. 111, 123902 (2012).
    • (2012) J. Appl. Phys. , vol.111 , pp. 123902
    • Verde, E.L.1    Landi, G.T.2    Gomes, J.A.3    Sousa, M.H.4    Bakuzis, A.F.5
  • 13
    • 0012262743 scopus 로고    scopus 로고
    • Heating magnetic fluid with alternating magnetic field
    • Rosensweig, R. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370-374 (2002).
    • (2002) J. Magn. Magn. Mater. , vol.252 , pp. 370-374
    • Rosensweig, R.1
  • 14
    • 84885597632 scopus 로고    scopus 로고
    • Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications
    • Vallejo-Fernandez, G. & O'Grady, K. Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications. Appl. Phys. Lett. 103, 142417 (2013).
    • (2013) Appl. Phys. Lett. , vol.103 , pp. 142417
    • Vallejo-Fernandez, G.1    O'Grady, K.2
  • 15
    • 33749513171 scopus 로고    scopus 로고
    • Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy
    • Hergt, R., Dutz, S., Müller, R. & Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter 18, S2919-S2934 (2006).
    • (2006) J. Phys.: Condens. Matter , vol.18 , pp. S2919-S2934
    • Hergt, R.1    Dutz, S.2    Müller, R.3    Zeisberger, M.4
  • 16
    • 84865733423 scopus 로고    scopus 로고
    • Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core-Shell Nanoparticles by Tuning Dipole-Dipole Interactions
    • Martinez-Boubeta, C. et al. Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core-Shell Nanoparticles by Tuning Dipole-Dipole Interactions. Adv. Funct. Mater. 22, 3737-3744 (2012).
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 3737-3744
    • Martinez-Boubeta, C.1
  • 17
    • 85015478766 scopus 로고    scopus 로고
    • Optimization of magnetic anisotropy and applied fields for hyperthermia applications
    • Sohn, H. & Victora, R. H. Optimization of magnetic anisotropy and applied fields for hyperthermia applications. J. Appl. Phys. 107, 09B312 (2010).
    • (2010) J. Appl. Phys. , vol.107 , pp. 09B312
    • Sohn, H.1    Victora, R.H.2
  • 18
    • 82555192613 scopus 로고    scopus 로고
    • Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study
    • Mehdaoui, B. et al. Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 21, 4573-4581 (2011).
    • (2011) Adv. Funct. Mater. , vol.21 , pp. 4573-4581
    • Mehdaoui, B.1
  • 19
    • 77958159320 scopus 로고    scopus 로고
    • Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles
    • Serantes, D. Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J. Appl. Phys. 108, 073918 (2010).
    • (2010) J. Appl. Phys. , vol.108 , pp. 073918
    • Serantes, D.1
  • 20
    • 84896280538 scopus 로고    scopus 로고
    • Nonlinear simulations to optimize magnetic nanoparticle hyperthermia
    • Reeves, D. B. & Weaver, J. B. Nonlinear simulations to optimize magnetic nanoparticle hyperthermia. Appl. Phys. Lett. 104, 102403 (2014).
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 102403
    • Reeves, D.B.1    Weaver, J.B.2
  • 21
    • 84897824266 scopus 로고    scopus 로고
    • Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling
    • Serantes, D. et al.Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. J. Phys. Chem. C 118, 5927-5934 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 5927-5934
    • Serantes, D.1
  • 22
    • 84892924833 scopus 로고    scopus 로고
    • Role of dipolar interaction in magnetic hyperthermia
    • Landi, G. T. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B 89, 014403 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 014403
    • Landi, G.T.1
  • 23
    • 84856508259 scopus 로고    scopus 로고
    • Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles
    • Jan
    • Haase, C. & Nowak, U. Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys. Rev. B 85(4), 045435 (Jan. 2012).
    • (2012) Phys. Rev. B , vol.85 , Issue.4 , pp. 045435
    • Haase, C.1    Nowak, U.2
  • 24
    • 79955706870 scopus 로고    scopus 로고
    • Simple models of dynamic hystereis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
    • Carrey, J., Mehdaoui, B. & Respaud, M. Simple models of dynamic hystereis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys 109, 083921 (2011).
    • (2011) J. Appl. Phys , vol.109 , pp. 083921
    • Carrey, J.1    Mehdaoui, B.2    Respaud, M.3
  • 25
    • 84918773246 scopus 로고    scopus 로고
    • Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power
    • Tan, R. P., Carrey, J. & Respaud, M. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys. Rev. B 90, 214421 (2014).
    • (2014) Phys. Rev. B , vol.90 , pp. 214421
    • Tan, R.P.1    Carrey, J.2    Respaud, M.3
  • 26
    • 0035124376 scopus 로고    scopus 로고
    • Calculations of the susceptibility of interacting superparamagnetic particles
    • Chantrell, R., Walmsley, N., Gore, J. & Maylin, M. Calculations of the susceptibility of interacting superparamagnetic particles. Phys. Rev. B 63, 024410 (2000).
    • (2000) Phys. Rev. B , vol.63 , pp. 024410
    • Chantrell, R.1    Walmsley, N.2    Gore, J.3    Maylin, M.4
  • 27
    • 0000326632 scopus 로고    scopus 로고
    • Monte Carlo simulation with time step quantification in terms of Langevin dynamics
    • Nowak, U., Chantrell, R. & Kennedy, E. Monte Carlo simulation with time step quantification in terms of Langevin dynamics. Phys. Rev. Lett. 84, 163-166 (2000).
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 163-166
    • Nowak, U.1    Chantrell, R.2    Kennedy, E.3
  • 28
    • 84924791119 scopus 로고    scopus 로고
    • note
    • It is worthwhile pointing out that the M(H) behavior in the dynamical response theory regime resembles a hysteresis loop. However, this kind of hysteresis is of dynamical character and essentially associated with 'inertial' phase lag between M and H, and is fundamentally different from the type of hysteresis associated with metastability.
  • 29
    • 84897885982 scopus 로고    scopus 로고
    • Role of geometrical symmetry in thermally activated processes in clusters of interacting dipolar moments
    • Hovorka, O., Barker, J., Friedman, G. & Chantrell, R. Role of geometrical symmetry in thermally activated processes in clusters of interacting dipolar moments. Phys. Rev. B 89, 9 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 9
    • Hovorka, O.1    Barker, J.2    Friedman, G.3    Chantrell, R.4
  • 30
    • 33947149071 scopus 로고    scopus 로고
    • Magnetic particle hyperthermiabiophysical limitations of a visionary tumour therapy
    • Hergt, R. & Dutz, S. Magnetic particle hyperthermiabiophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187-192 (2007).
    • (2007) J. Magn. Magn. Mater. , vol.311 , pp. 187-192
    • Hergt, R.1    Dutz, S.2
  • 31
    • 0036573664 scopus 로고    scopus 로고
    • Computational model of the magnetic and transport properties of interacting fine particles
    • Verdes, C. Ruiz-Diaz, B., Thompson, S., Chantrell, R. &Stancu, A. Computational model of the magnetic and transport properties of interacting fine particles. Phys. Rev. B 65, 174417 (2002).
    • (2002) Phys. Rev. B , vol.65 , pp. 174417
    • Verdes, C.1    Ruiz-Diaz, B.2    Thompson, S.3    Chantrell, R.4    Stancu, A.5
  • 32
    • 0003088679 scopus 로고
    • Theórie du traînage magnétique des ferromagné tiques en grains fins avec applications aux terres cuites
    • Nél, L. Theórie du traînage magnétique des ferromagné tiques en grains fins avec applications aux terres cuites. Ann. geóphys (1949).
    • (1949) Ann. Geóphys
    • Nél, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.