-
1
-
-
78751672975
-
Autophagy in immunity and inflammation
-
21248839
-
B.Levine, N.Mizushima, H.W.Virgin. Autophagy in immunity and inflammation. Nature 2011; 469:323-35; PMID:21248839; http://dx.doi.org/10.1038/nature09782
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
2
-
-
79960878784
-
Atg8: an autophagy-related ubiquitin-like protein family
-
21867568
-
T.Shpilka, H.Weidberg, S.Pietrokovski, Z.Elazar. Atg8:an autophagy-related ubiquitin-like protein family. Genome Biol 2011; 12:226; PMID:21867568; http://dx.doi.org/10.1186/gb-2011-12-7-226
-
(2011)
Genome Biol
, vol.12
, pp. 226
-
-
Shpilka, T.1
Weidberg, H.2
Pietrokovski, S.3
Elazar, Z.4
-
3
-
-
84892678766
-
Bacteria-autophagy interplay: a battle for survival
-
24384599
-
J.Huang, J.H.Brumell. Bacteria-autophagy interplay:a battle for survival. Nat Rev Microbiol 2014; 12:101-14; PMID:24384599; http://dx.doi.org/10.1038/nrmicro3160
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 101-114
-
-
Huang, J.1
Brumell, J.H.2
-
4
-
-
37549043217
-
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
-
18097414
-
M.A.Sanjuan, C.P.Dillon, S.W.Tait, S.Moshiach, F.Dorsey, S.Connell, M.Komatsu, K.Tanaka, J.L.Cleveland, S.Withoff, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007; 450:1253-7; PMID:18097414; http://dx.doi.org/10.1038/nature06421
-
(2007)
Nature
, vol.450
, pp. 1253-1257
-
-
Sanjuan, M.A.1
Dillon, C.P.2
Tait, S.W.3
Moshiach, S.4
Dorsey, F.5
Connell, S.6
Komatsu, M.7
Tanaka, K.8
Cleveland, J.L.9
Withoff, S.10
-
5
-
-
65549094988
-
Activation of antibacterial autophagy by NADPH oxidases
-
19339495
-
J.Huang, V.Canadien, G.Y.Lam, B.E.Steinberg, M.C.Dinauer, M.A.Magalhaes, M.Glogauer, S.Grinstein, J.H.Brumell. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A 2009; 106:6226-31; PMID:19339495; http://dx.doi.org/10.1073/pnas.0811045106
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 6226-6231
-
-
Huang, J.1
Canadien, V.2
Lam, G.Y.3
Steinberg, B.E.4
Dinauer, M.C.5
Magalhaes, M.A.6
Glogauer, M.7
Grinstein, S.8
Brumell, J.H.9
-
6
-
-
84934287492
-
Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
-
26098576
-
J.Martinez, R.K.Malireddi, Q.Lu, L.D.Cunha, S.Pelletier, S.Gingras, R.Orchard, J.L.Guan, H.Tan, J.Peng, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 2015; 17:893-906; PMID:26098576; http://dx.doi.org/10.1038/ncb3192
-
(2015)
Nat Cell Biol
, vol.17
, pp. 893-906
-
-
Martinez, J.1
Malireddi, R.K.2
Lu, Q.3
Cunha, L.D.4
Pelletier, S.5
Gingras, S.6
Orchard, R.7
Guan, J.L.8
Tan, H.9
Peng, J.10
-
7
-
-
84867268375
-
Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens
-
22902620
-
J.Ma, C.Becker, C.A.Lowell, D.M.Underhill. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem 2012; 287:34149-56; PMID:22902620; http://dx.doi.org/10.1074/jbc.M112.382812
-
(2012)
J Biol Chem
, vol.287
, pp. 34149-34156
-
-
Ma, J.1
Becker, C.2
Lowell, C.A.3
Underhill, D.M.4
-
8
-
-
84896723873
-
Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production
-
24442442
-
J.Ma, C.Becker, C.Reyes, D.M.Underhill. Cutting edge:FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production. J Immunol 2014; 192:1356-60; PMID:24442442; http://dx.doi.org/10.4049/jimmunol.1302835
-
(2014)
J Immunol
, vol.192
, pp. 1356-1360
-
-
Ma, J.1
Becker, C.2
Reyes, C.3
Underhill, D.M.4
-
9
-
-
80054825045
-
Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells
-
21969579
-
J.Martinez, J.Almendinger, A.Oberst, R.Ness, C.P.Dillon, P.Fitzgerald, M.O.Hengartner, D.R.Green. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A 2011; 108:17396-401; PMID:21969579; http://dx.doi.org/10.1073/pnas.1113421108
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 17396-17401
-
-
Martinez, J.1
Almendinger, J.2
Oberst, A.3
Ness, R.4
Dillon, C.P.5
Fitzgerald, P.6
Hengartner, M.O.7
Green, D.R.8
-
10
-
-
84890828734
-
Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing
-
24322427
-
S.Romao, N.Gasser, A.C.Becker, B.Guhl, M.Bajagic, D.Vanoaica, U.Ziegler, J.Roesler, J.Dengjel, J.Reichenbach, et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol 2013; 203:757-66; PMID:24322427; http://dx.doi.org/10.1083/jcb.201308173
-
(2013)
J Cell Biol
, vol.203
, pp. 757-766
-
-
Romao, S.1
Gasser, N.2
Becker, A.C.3
Guhl, B.4
Bajagic, M.5
Vanoaica, D.6
Ziegler, U.7
Roesler, J.8
Dengjel, J.9
Reichenbach, J.10
-
11
-
-
58049198458
-
Toll-like receptor signaling in the lysosomal pathways
-
19120486
-
M.A.Sanjuan, S.Milasta, D.R.Green. Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 2009; 227:203-20; PMID:19120486; http://dx.doi.org/10.1111/j.1600-065X.2008.00732.x
-
(2009)
Immunol Rev
, vol.227
, pp. 203-220
-
-
Sanjuan, M.A.1
Milasta, S.2
Green, D.R.3
-
12
-
-
84907694530
-
Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection
-
25211076
-
P.Abnave, G.Mottola, G.Gimenez, N.Boucherit, V.Trouplin, C.Torre, F.Conti, A.Ben Amara, C.Lepolard, B.Djian, et al. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2014; 16:338-50; PMID:25211076; http://dx.doi.org/10.1016/j.chom.2014.08.002
-
(2014)
Cell Host Microbe
, vol.16
, pp. 338-350
-
-
Abnave, P.1
Mottola, G.2
Gimenez, G.3
Boucherit, N.4
Trouplin, V.5
Torre, C.6
Conti, F.7
Ben Amara, A.8
Lepolard, C.9
Djian, B.10
-
13
-
-
84942829178
-
The contribution of melanoregulin to microtubule-associated protein 1 light chain 3 (LC3) associated phagocytosis in retinal pigment epithelium
-
25301234
-
L.S.Frost, V.S.Lopes, A.Bragin, J.Reyes-Reveles, J.Brancato, A.Cohen, C.H.Mitchell, D.S.Williams, K.Boesze-Battaglia. The contribution of melanoregulin to microtubule-associated protein 1 light chain 3 (LC3) associated phagocytosis in retinal pigment epithelium. Mol Neurobiol 2014; PMID:25301234
-
(2014)
Mol Neurobiol
-
-
Frost, L.S.1
Lopes, V.S.2
Bragin, A.3
Reyes-Reveles, J.4
Brancato, J.5
Cohen, A.6
Mitchell, C.H.7
Williams, D.S.8
Boesze-Battaglia, K.9
-
14
-
-
84880551919
-
Noncanonical autophagy promotes the visual cycle
-
23870125
-
J.Y.Kim, H.Zhao, J.Martinez, T.A.Doggett, A.V.Kolesnikov, P.H.Tang, Z.Ablonczy, C.C.Chan, Z.Zhou, D.R.Green, et al. Noncanonical autophagy promotes the visual cycle. Cell 2013; 154:365-76; PMID:23870125; http://dx.doi.org/10.1016/j.cell.2013.06.012
-
(2013)
Cell
, vol.154
, pp. 365-376
-
-
Kim, J.Y.1
Zhao, H.2
Martinez, J.3
Doggett, T.A.4
Kolesnikov, A.V.5
Tang, P.H.6
Ablonczy, Z.7
Chan, C.C.8
Zhou, Z.9
Green, D.R.10
-
15
-
-
0030820011
-
Expression of hematopoietic cell markers by retinal pigment epithelial cells
-
9330849
-
G.A.Limb, C.J.Cole, O.Earley, R.D.Hollifield, W.Russell, M.R.Stanford. Expression of hematopoietic cell markers by retinal pigment epithelial cells. Curr Eye Res 1997; 16:985-91; PMID:9330849; http://dx.doi.org/10.1076/ceyr.16.10.985.9009
-
(1997)
Curr Eye Res
, vol.16
, pp. 985-991
-
-
Limb, G.A.1
Cole, C.J.2
Earley, O.3
Hollifield, R.D.4
Russell, W.5
Stanford, M.R.6
-
16
-
-
0033213982
-
Phagosomal maturation, acidification, and inhibition of bacterial growth in nonphagocytic cells transfected with FcgammaRIIA receptors
-
10497205
-
G.P.Downey, R.J.Botelho, J.R.Butler, Y.Moltyaner, P.Chien, A.D.Schreiber, S.Grinstein. Phagosomal maturation, acidification, and inhibition of bacterial growth in nonphagocytic cells transfected with FcgammaRIIA receptors. J Biol Chem 1999; 274:28436-44; PMID:10497205; http://dx.doi.org/10.1074/jbc.274.40.28436
-
(1999)
J Biol Chem
, vol.274
, pp. 28436-28444
-
-
Downey, G.P.1
Botelho, R.J.2
Butler, J.R.3
Moltyaner, Y.4
Chien, P.5
Schreiber, A.D.6
Grinstein, S.7
-
17
-
-
0028962899
-
Molecular dissection of Fc gamma receptor-mediated phagocytosis
-
7797242
-
Z.K.Indik, J.G.Park, S.Hunter, M.Mantaring, A.D.Schreiber. Molecular dissection of Fc gamma receptor-mediated phagocytosis. Immunol Lett 1995; 44:133-8; PMID:7797242; http://dx.doi.org/10.1016/0165-2478(94)00204-5
-
(1995)
Immunol Lett
, vol.44
, pp. 133-138
-
-
Indik, Z.K.1
Park, J.G.2
Hunter, S.3
Mantaring, M.4
Schreiber, A.D.5
-
18
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
15525940
-
A.Kuma, M.Hatano, M.Matsui, A.Yamamoto, H.Nakaya, T.Yoshimori, Y.Ohsumi, T.Tokuhisa, N.Mizushima. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032-6; PMID:15525940; http://dx.doi.org/10.1038/nature03029
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
19
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
15866887
-
M.Komatsu, S.Waguri, T.Ueno, J.Iwata, S.Murata, I.Tanida, J.Ezaki, N.Mizushima, Y.Ohsumi, Y.Uchiyama, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169:425-34; PMID:15866887; http://dx.doi.org/10.1083/jcb.200412022
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
-
20
-
-
55249109400
-
Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
-
18996346
-
Z.Zhao, B.Fux, M.Goodwin, I.R.Dunay, D.Strong, B.C.Miller, K.Cadwell, M.A.Delgado, M.Ponpuak, K.G.Green, et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 2008; 4:458-69; PMID:18996346; http://dx.doi.org/10.1016/j.chom.2008.10.003
-
(2008)
Cell Host Microbe
, vol.4
, pp. 458-469
-
-
Zhao, Z.1
Fux, B.2
Goodwin, M.3
Dunay, I.R.4
Strong, D.5
Miller, B.C.6
Cadwell, K.7
Delgado, M.A.8
Ponpuak, M.9
Green, K.G.10
-
21
-
-
83455173649
-
Autophagy proteins regulate the secretory component of osteoclastic bone resorption
-
22055344
-
C.J.DeSelm, B.C.Miller, W.Zou, W.L.Beatty, E.van Meel, Y.Takahata, J.Klumperman, S.A.Tooze, S.L.Teitelbaum, H.W.Virgin. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 2011; 21:966-74; PMID:22055344; http://dx.doi.org/10.1016/j.devcel.2011.08.016
-
(2011)
Dev Cell
, vol.21
, pp. 966-974
-
-
DeSelm, C.J.1
Miller, B.C.2
Zou, W.3
Beatty, W.L.4
van Meel, E.5
Takahata, Y.6
Klumperman, J.7
Tooze, S.A.8
Teitelbaum, S.L.9
Virgin, H.W.10
-
22
-
-
35848967804
-
How to interpret LC3 immunoblotting
-
17611390
-
N.Mizushima, T.Yoshimori. How to interpret LC3 immunoblotting. Autophagy 2007; 3:542-5; PMID:17611390; http://dx.doi.org/10.4161/auto.4600
-
(2007)
Autophagy
, vol.3
, pp. 542-545
-
-
Mizushima, N.1
Yoshimori, T.2
-
23
-
-
33745825951
-
NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells
-
16839887
-
A.Savina, C.Jancic, S.Hugues, P.Guermonprez, P.Vargas, I.C.Moura, A.M.Lennon-Dumenil, M.C.Seabra, G.Raposo, S.Amigorena. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 2006; 126:205-18; PMID:16839887; http://dx.doi.org/10.1016/j.cell.2006.05.035
-
(2006)
Cell
, vol.126
, pp. 205-218
-
-
Savina, A.1
Jancic, C.2
Hugues, S.3
Guermonprez, P.4
Vargas, P.5
Moura, I.C.6
Lennon-Dumenil, A.M.7
Seabra, M.C.8
Raposo, G.9
Amigorena, S.10
-
24
-
-
58149388349
-
NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells
-
18682599
-
A.R.Mantegazza, A.Savina, M.Vermeulen, L.Perez, J.Geffner, O.Hermine, S.D.Rosenzweig, F.Faure, S.Amigorena. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 2008; 112:4712-22; PMID:18682599; http://dx.doi.org/10.1182/blood-2008-01-134791
-
(2008)
Blood
, vol.112
, pp. 4712-4722
-
-
Mantegazza, A.R.1
Savina, A.2
Vermeulen, M.3
Perez, L.4
Geffner, J.5
Hermine, O.6
Rosenzweig, S.D.7
Faure, F.8
Amigorena, S.9
-
25
-
-
77953782625
-
NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes
-
20498052
-
J.M.Rybicka, D.R.Balce, M.F.Khan, R.M.Krohn, R.M.Yates. NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes. Proc Natl Acad Sci U S A 2010; 107:10496-501; PMID:20498052; http://dx.doi.org/10.1073/pnas.0914867107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 10496-10501
-
-
Rybicka, J.M.1
Balce, D.R.2
Khan, M.F.3
Krohn, R.M.4
Yates, R.M.5
-
26
-
-
84857053387
-
Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner
-
22157818
-
J.M.Rybicka, D.R.Balce, S.Chaudhuri, E.R.Allan, R.M.Yates. Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J 2012; 31:932-44; PMID:22157818; http://dx.doi.org/10.1038/emboj.2011.440
-
(2012)
EMBO J
, vol.31
, pp. 932-944
-
-
Rybicka, J.M.1
Balce, D.R.2
Chaudhuri, S.3
Allan, E.R.4
Yates, R.M.5
-
27
-
-
84901257403
-
NADPH oxidase modifies patterns of MHC class II-restricted epitopic repertoires through redox control of antigen processing
-
24778444
-
E.R.Allan, P.Tailor, D.R.Balce, P.Pirzadeh, N.T.McKenna, B.Renaux, A.L.Warren, F.R.Jirik, R.M.Yates. NADPH oxidase modifies patterns of MHC class II-restricted epitopic repertoires through redox control of antigen processing. J Immunol 2014; 192:4989-5001; PMID:24778444; http://dx.doi.org/10.4049/jimmunol.1302896
-
(2014)
J Immunol
, vol.192
, pp. 4989-5001
-
-
Allan, E.R.1
Tailor, P.2
Balce, D.R.3
Pirzadeh, P.4
McKenna, N.T.5
Renaux, B.6
Warren, A.L.7
Jirik, F.R.8
Yates, R.M.9
-
28
-
-
84908637086
-
Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages
-
25165138
-
J.Canton, R.Khezri, M.Glogauer, S.Grinstein. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell 2014; 25:3330-41; PMID:25165138; http://dx.doi.org/10.1091/mbc.E14-05-0967
-
(2014)
Mol Biol Cell
, vol.25
, pp. 3330-3341
-
-
Canton, J.1
Khezri, R.2
Glogauer, M.3
Grinstein, S.4
-
29
-
-
84863373173
-
Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation
-
22423966
-
C.S.Yang, J.S.Lee, M.Rodgers, C.K.Min, J.Y.Lee, H.J.Kim, K.H.Lee, C.J.Kim, B.Oh, E.Zandi, et al. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 2012; 11:264-76; PMID:22423966; http://dx.doi.org/10.1016/j.chom.2012.01.018
-
(2012)
Cell Host Microbe
, vol.11
, pp. 264-276
-
-
Yang, C.S.1
Lee, J.S.2
Rodgers, M.3
Min, C.K.4
Lee, J.Y.5
Kim, H.J.6
Lee, K.H.7
Kim, C.J.8
Oh, B.9
Zandi, E.10
-
30
-
-
84878245034
-
Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function
-
23644505
-
A.Sokolovska, C.E.Becker, W.K.Ip, V.A.Rathinam, M.Brudner, N.Paquette, A.Tanne, S.K.Vanaja, K.J.Moore, K.A.Fitzgerald, et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 2013; 14:543-53; PMID:23644505; http://dx.doi.org/10.1038/ni.2595
-
(2013)
Nat Immunol
, vol.14
, pp. 543-553
-
-
Sokolovska, A.1
Becker, C.E.2
Ip, W.K.3
Rathinam, V.A.4
Brudner, M.5
Paquette, N.6
Tanne, A.7
Vanaja, S.K.8
Moore, K.J.9
Fitzgerald, K.A.10
-
31
-
-
84899992126
-
NRROS negatively regulates reactive oxygen species during host defence and autoimmunity
-
24739962
-
R.Noubade, K.Wong, N.Ota, S.Rutz, C.Eidenschenk, P.A.Valdez, J.Ding, I.Peng, A.Sebrell, P.Caplazi, et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 2014; 509:235-9; PMID:24739962; http://dx.doi.org/10.1038/nature13152
-
(2014)
Nature
, vol.509
, pp. 235-239
-
-
Noubade, R.1
Wong, K.2
Ota, N.3
Rutz, S.4
Eidenschenk, C.5
Valdez, P.A.6
Ding, J.7
Peng, I.8
Sebrell, A.9
Caplazi, P.10
-
32
-
-
79955777383
-
A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection
-
21551061
-
B.H.Kim, A.R.Shenoy, P.Kumar, R.Das, S.Tiwari, J.D.MacMicking. A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science 2011; 332:717-21; PMID:21551061; http://dx.doi.org/10.1126/science.1201711
-
(2011)
Science
, vol.332
, pp. 717-721
-
-
Kim, B.H.1
Shenoy, A.R.2
Kumar, P.3
Das, R.4
Tiwari, S.5
MacMicking, J.D.6
-
33
-
-
78149473340
-
LRRK2 is involved in the IFN-gamma response and host response to pathogens
-
20921534
-
A.Gardet, Y.Benita, C.Li, B.E.Sands, I.Ballester, C.Stevens, J.R.Korzenik, J.D.Rioux, M.J.Daly, R.J.Xavier, et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 2010; 185:5577-85; PMID:20921534; http://dx.doi.org/10.4049/jimmunol.1000548
-
(2010)
J Immunol
, vol.185
, pp. 5577-5585
-
-
Gardet, A.1
Benita, Y.2
Li, C.3
Sands, B.E.4
Ballester, I.5
Stevens, C.6
Korzenik, J.R.7
Rioux, J.D.8
Daly, M.J.9
Xavier, R.J.10
-
34
-
-
84880896860
-
Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection
-
23584039
-
G.Y.Lam, M.Cemma, A.M.Muise, D.E.Higgins, J.H.Brumell. Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection. Autophagy 2013; 9:985-95; PMID:23584039; http://dx.doi.org/10.4161/auto.24406
-
(2013)
Autophagy
, vol.9
, pp. 985-995
-
-
Lam, G.Y.1
Cemma, M.2
Muise, A.M.3
Higgins, D.E.4
Brumell, J.H.5
|