-
1
-
-
84878263181
-
Evolution of strategies for modern rechargeable batteries
-
Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 1053-1061
-
-
Goodenough, J.B.1
-
2
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.-M.4
van Schalkwijk, W.5
-
3
-
-
84902996046
-
Flexible solid-state supercapacitors: Design, fabrication and applications
-
Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2160-2181
-
-
Lu, X.H.1
Yu, M.H.2
Wang, G.M.3
Tong, Y.X.4
Li, Y.5
-
4
-
-
63749132596
-
Progress in electrical energy storage system: A critical review
-
Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312.
-
(2009)
Prog. Nat. Sci.
, vol.19
, pp. 291-312
-
-
Chen, H.S.1
Cong, T.N.2
Yang, W.3
Tan, C.Q.4
Li, Y.L.5
Ding, Y.L.6
-
5
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.-M.1
Armand, M.2
-
6
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.M.3
-
7
-
-
38949102073
-
Building better batteries
-
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
8
-
-
84868354566
-
Nanomaterials for renewable energy production and storage
-
Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 7909-7937
-
-
Chen, X.B.1
Li, C.2
Grätzel, M.3
Kostecki, R.4
Mao, S.S.5
-
9
-
-
33244474899
-
Electrodes with high power and high capacity for rechargeable lithium batteries
-
Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.
-
(2006)
Science
, vol.311
, pp. 977-980
-
-
Kang, K.1
Meng, Y.S.2
Bréger, J.3
Grey, C.P.4
Ceder, G.5
-
10
-
-
84916631543
-
Nanowire electrodes for electrochemical energy storage devices
-
Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.
-
(2014)
Chem. Rev.
, vol.114
, pp. 11828-11862
-
-
Mai, L.Q.1
Tian, X.C.2
Xu, X.3
Chang, L.4
Xu, L.5
-
11
-
-
84875683271
-
In situ fabrication of porous graphene electrodes for highperformance energy storage
-
Wang, Z.-L.; Xu, D.; Wang, H.-G.; Wu, Z.; Zhang, X.-B. In situ fabrication of porous graphene electrodes for highperformance energy storage. ACS Nano 2013, 7, 2422–2430.
-
(2013)
ACS Nano
, vol.7
, pp. 2422-2430
-
-
Wang, Z.-L.1
Xu, D.2
Wang, H.-G.3
Wu, Z.4
Zhang, X.-B.5
-
12
-
-
84863027302
-
2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage
-
2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage. J. Mater. Chem. 2012, 22, 3404–3410.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 3404-3410
-
-
Huang, X.-L.1
Chai, J.2
Jiang, T.3
Wei, Y.-J.4
Chen, G.5
Liu, W.-Q.6
Han, D.X.7
Niu, L.8
Wang, L.M.9
Zhang, X.-B.10
-
14
-
-
7544234502
-
What are batteries, fuel cells, and supercapacitors?
-
Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.
-
(2004)
Chem. Rev.
, vol.104
, pp. 4245-4270
-
-
Winter, M.1
Brodd, R.J.2
-
15
-
-
80052230656
-
Challenges in the development of advanced Li-ion batteries: A review
-
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3243-3262
-
-
Etacheri, V.1
Marom, R.2
Elazari, R.3
Salitra, G.4
Aurbach, D.5
-
16
-
-
79961005781
-
Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
-
Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2682-2699
-
-
Ji, L.W.1
Lin, Z.2
Alcoutlabi, M.3
Zhang, X.W.4
-
17
-
-
84919936286
-
Recent advances in metal nitrides as highperformance electrode materials for energy storage devices
-
Balogun, M.-S.; Qiu, W. T.; Wang, W.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Recent advances in metal nitrides as highperformance electrode materials for energy storage devices. J. Mater. Chem. A 2015, 3, 1364–1387.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 1364-1387
-
-
Balogun, M.-S.1
Qiu, W.T.2
Wang, W.3
Fang, P.P.4
Lu, X.H.5
Tong, Y.X.6
-
18
-
-
84941128841
-
2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation
-
2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B-Environ. 2016, 181, 779–787.
-
(2016)
Appl. Catal. B-Environ.
, vol.181
, pp. 779-787
-
-
Huang, Y.C.1
Long, B.2
Tang, M.N.3
Rui, Z.B.4
Balogun, M.-S.5
Tong, Y.X.6
Ji, H.B.7
-
20
-
-
84906079028
-
4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries
-
4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14641–14648.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 14641-14648
-
-
Fan, X.L.1
Shao, J.2
Xiao, X.Z.3
Chen, L.X.4
Wang, X.H.5
Li, S.Q.6
Ge, H.W.7
-
21
-
-
84863011248
-
Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage
-
Huang, Y.; Huang, X.-L.; Lian, J.-S.; Xu, D.; Wang, L.-M.; Zhang, X.-B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 2844-2847
-
-
Huang, Y.1
Huang, X.-L.2
Lian, J.-S.3
Xu, D.4
Wang, L.-M.5
Zhang, X.-B.6
-
22
-
-
84880276450
-
Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries
-
Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 4345-4353
-
-
Huang, X.L.1
Wang, R.Z.2
Xu, D.3
Wang, Z.L.4
Wang, H.G.5
Xu, J.J.6
Wu, Z.7
Liu, Q.C.8
Zhang, Y.9
Zhang, X.B.10
-
24
-
-
84927767956
-
Li-ion battery materials: Present and future
-
Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.
-
(2015)
Mater. Today
, vol.18
, pp. 252-264
-
-
Nitta, N.1
Wu, F.X.2
Lee, J.T.3
Yushin, G.4
-
25
-
-
84864748139
-
Properties and promises of nanosized insertion materials for Li-ion batteries
-
Wagemaker, M.; Mulder, F. M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2013, 46, 1206–1215.
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 1206-1215
-
-
Wagemaker, M.1
Mulder, F.M.2
-
26
-
-
84922008616
-
Nanostructured anode materials for lithium ion batteries
-
Roy, P.; Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 2454-2484
-
-
Roy, P.1
Srivastava, S.K.2
-
27
-
-
84888809380
-
2 nanowires/graphene oxide nanosheets composite with high specific capacitance
-
2 nanowires/graphene oxide nanosheets composite with high specific capacitance. Electrochim. Acta 2014, 116, 111–117.
-
(2014)
Electrochim. Acta
, vol.116
, pp. 111-117
-
-
Dai, K.1
Lu, L.H.2
Liang, C.H.3
Dai, J.M.4
Liu, Q.Z.5
Zhang, Y.X.6
Zhu, G.P.7
Liu, Z.L.8
-
29
-
-
84937022651
-
Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes
-
Aravindan, V.; Lee, Y.-S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1402225
-
-
Aravindan, V.1
Lee, Y.-S.2
Madhavi, S.3
-
30
-
-
84952864618
-
Recent advancements in all-vanadium redox flow batteries
-
Ulaganathan, M.; Aravindan, V.; Yan, Q. Y.; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T. M. Recent advancements in all-vanadium redox flow batteries. Adv. Mater. Interfaces 2016, 3, DOI: 10.1002/admi.201500309.
-
(2016)
Adv. Mater. Interfaces
, pp. 3
-
-
Ulaganathan, M.1
Aravindan, V.2
Yan, Q.Y.3
Madhavi, S.4
Skyllas-Kazacos, M.5
Lim, T.M.6
-
31
-
-
84958914705
-
5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell
-
5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell. Small 2016, 12, 1082–1090.
-
(2016)
Small
, vol.12
, pp. 1082-1090
-
-
Zhang, P.F.1
Zhao, L.Z.2
An, Q.Y.3
Wei, Q.L.4
Zhou, L.5
Wei, X.J.6
Sheng, J.Z.7
Mai, L.Q.8
-
32
-
-
84893086944
-
Recent progress on flexible lithium rechargeable batteries
-
Gwon, H.; Hong, J.; Kim, H.; Seo, D.-H.; Jeon, S.; Kang, K. Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 2014, 7, 538–551.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 538-551
-
-
Gwon, H.1
Hong, J.2
Kim, H.3
Seo, D.-H.4
Jeon, S.5
Kang, K.6
-
33
-
-
84896910340
-
Progress in flexible lithium batteries and future prospects
-
Zhou, G. M.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1307-1338
-
-
Zhou, G.M.1
Li, F.2
Cheng, H.-M.3
-
34
-
-
84903182595
-
Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies
-
Hu, Y. H.; Sun, X. L. Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies. J. Mater. Chem. A 2014, 2, 10712–10738.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 10712-10738
-
-
Hu, Y.H.1
Sun, X.L.2
-
35
-
-
84903893188
-
Flexible solid-state electrochemical supercapacitors
-
Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290.
-
(2014)
Nano Energy
, vol.8
, pp. 274-290
-
-
Yang, P.H.1
Mai, W.J.2
-
36
-
-
84969601938
-
2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries
-
2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale 2016, 8, 8666–8672.
-
(2016)
Nanoscale
, vol.8
, pp. 8666-8672
-
-
Li, W.W.1
Gan, L.2
Guo, K.3
Ke, L.B.4
Wei, Y.Q.5
Li, H.Q.6
Shen, G.Z.7
Zhai, T.Y.8
-
37
-
-
84948690414
-
2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries
-
2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 25991–26003.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 25991-26003
-
-
Balogun, M.-S.1
Zhu, Y.K.2
Qiu, W.T.3
Luo, Y.4
Huang, Y.C.5
Liang, C.L.6
Lu, X.H.7
Tong, Y.X.8
-
38
-
-
84907553823
-
Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries
-
Balogun, M.-S.; Li, C.; Zeng, Y. X.; Yu, M. H.; Wu, Q. L.; Wu, M. M.; Lu, X. H.; Tong, Y. X. Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J. Power Sources 2014, 272, 946–953.
-
(2014)
J. Power Sources
, vol.272
, pp. 946-953
-
-
Balogun, M.-S.1
Li, C.2
Zeng, Y.X.3
Yu, M.H.4
Wu, Q.L.5
Wu, M.M.6
Lu, X.H.7
Tong, Y.X.8
-
39
-
-
84862302894
-
4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries
-
4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.
-
(2012)
Nano Lett.
, vol.12
, pp. 3005-3011
-
-
Liu, B.1
Zhang, J.2
Wang, X.F.3
Chen, G.4
Chen, D.5
Zhou, C.W.6
Shen, G.Z.7
-
40
-
-
84937120201
-
4/carbon nanotube film
-
4/carbon nanotube film. Nano Energy 2015, 12, 43–51.
-
(2015)
Nano Energy
, vol.12
, pp. 43-51
-
-
Fang, X.1
Shen, C.F.2
Ge, M.Y.3
Rong, J.P.4
Liu, Y.H.5
Zhang, A.Y.6
Wei, F.7
Zhou, C.W.8
-
41
-
-
84921457082
-
Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries
-
Zhu, J.; Chen, L. B.; Xu, Z.; Lu, B. G. Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 2015, 12, 339–346.
-
(2015)
Nano Energy
, vol.12
, pp. 339-346
-
-
Zhu, J.1
Chen, L.B.2
Xu, Z.3
Lu, B.G.4
-
42
-
-
84955253738
-
3) nanorods as anode for high-performance flexible lithium ion batteries
-
3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sources 2016, 308, 7–17.
-
(2016)
J. Power Sources
, vol.308
, pp. 7-17
-
-
Balogun, M.-S.1
Wu, Z.P.2
Luo, Y.3
Qiu, W.T.4
Fan, X.L.5
Long, B.6
Huang, M.7
Liu, P.8
Tong, Y.X.9
-
43
-
-
84958987564
-
4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries
-
4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries. Electrochim. Acta 2016, 193, 32–38.
-
(2016)
Electrochim. Acta
, vol.193
, pp. 32-38
-
-
Qiu, W.T.1
Balogun, M.-S.2
Luo, Y.3
Chen, K.Q.4
Zhu, Y.K.5
Xiao, X.J.6
Lu, X.H.7
Liu, P.8
Tong, Y.X.9
-
44
-
-
84929457332
-
Composite of graphite/phosphorus as anode for lithium-ion batteries
-
Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.
-
(2015)
J. Power Sources
, vol.289
, pp. 100-104
-
-
Bai, A.J.1
Wang, L.2
Li, J.Y.3
He, X.M.4
Wang, J.X.5
Wang, J.L.6
-
45
-
-
84904597826
-
Flexible energy-storage devices: Design consideration and recent progress
-
Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4763-4782
-
-
Wang, X.F.1
Lu, X.H.2
Liu, B.3
Chen, D.4
Tong, Y.X.5
Shen, G.Z.6
-
47
-
-
84906821052
-
Intercalation anode material for lithium ion battery based on molybdenum dioxide
-
Kumar Sen, U.; Shaligram, A.; Mitra, S. Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Appl. Mater. Interfaces 2014, 6, 14311–14319.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 14311-14319
-
-
Kumar Sen, U.1
Shaligram, A.2
Mitra, S.3
-
48
-
-
84880048446
-
Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/ LiNi0.5Mn1.5O4 i d lithium ion battery
-
Xu, G.-L.; Xu, Y.-F.; Fang, J.-C.; Fu, F.; Sun, H.; Huang, L.; Yang, S. H.; Sun, S.-G. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/ LiNi0.5Mn1.5O4 i d lithium ion battery. ACS Appl. Mater. Interfaces 2013, 5, 6316–6323.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 6316-6323
-
-
Xu, G.-L.1
Xu, Y.-F.2
Fang, J.-C.3
Fu, F.4
Sun, H.5
Huang, L.6
Yang, S.H.7
Sun, S.-G.8
-
51
-
-
79959964900
-
Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries
-
Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013–4023.
-
(2011)
Carbon
, vol.49
, pp. 4013-4023
-
-
Bulusheva, L.G.1
Okotrub, A.V.2
Kurenya, A.G.3
Zhang, H.K.4
Zhang, H.J.5
Chen, X.H.6
Song, H.H.7
-
52
-
-
0000654924
-
A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium
-
Débart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266–A1274.
-
(2001)
J. Electrochem. Soc.
, vol.148
, pp. A1266-A1274
-
-
Débart, A.1
Dupont, L.2
Poizot, P.3
Leriche, J.B.4
Tarascon, J.M.5
-
54
-
-
7644220712
-
Lithium batteries and cathode materials
-
Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.
-
(2004)
Chem. Rev.
, vol.104
, pp. 4271-4302
-
-
Whittingham, M.S.1
-
55
-
-
84906540695
-
5/ conductive-polymer core/shell nanobelt array on threedimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries
-
5/ conductive-polymer core/shell nanobelt array on threedimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794–5800.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5794-5800
-
-
Chao, D.L.1
Xia, X.H.2
Liu, J.L.3
Fan, Z.X.4
Ng, C.F.5
Lin, J.Y.6
Zhang, H.7
Shen, Z.X.8
Fan, H.J.9
-
56
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for Li ion batteries
-
Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.
-
(2013)
Chem. Rev.
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.R.3
-
57
-
-
84946730768
-
Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries
-
Simões, M.; Surace, Y.; Yoon, S.; Battaglia, C.; Pokrant, S.; Weidenkaff, A. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries. J. Power Sources 2015, 291, 66–74.
-
(2015)
J. Power Sources
, vol.291
, pp. 66-74
-
-
Simões, M.1
Surace, Y.2
Yoon, S.3
Battaglia, C.4
Pokrant, S.5
Weidenkaff, A.6
-
58
-
-
84877741619
-
2-based nanomaterials: synthesis and application in lithium-ion batteries
-
2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.
-
(2013)
Small
, vol.9
, pp. 1877-1893
-
-
Chen, J.S.1
Lou, X.W.D.2
-
59
-
-
84877756741
-
Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage
-
Li, G.-R.; Xu, H.; Lu, X.-F.; Feng, J.-X.; Tong, Y.-X.; Su, C.-Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 2013, 5, 4056–4069.
-
(2013)
Nanoscale
, vol.5
, pp. 4056-4069
-
-
Li, G.-R.1
Xu, H.2
Lu, X.-F.3
Feng, J.-X.4
Tong, Y.-X.5
Su, C.-Y.6
-
60
-
-
84856492368
-
Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices
-
Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.
-
(2012)
Prog. Mater. Sci.
, vol.57
, pp. 724-803
-
-
Tiwari, J.N.1
Tiwari, R.N.2
Kim, K.S.3
-
61
-
-
78651521297
-
Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes
-
Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58.
-
(2011)
Nanoscale
, vol.3
, pp. 45-58
-
-
Jiang, J.1
Li, Y.Y.2
Liu, J.P.3
Huang, X.T.4
-
62
-
-
70350139845
-
Recent advances in rechargeable battery materials: A chemist's perspective
-
Palacín, M. R. Recent advances in rechargeable battery materials: A chemist's perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 2565-2575
-
-
Palacín, M.R.1
-
63
-
-
84896747908
-
2 hybrid nanowire array for high-performance lithium ion full cells
-
2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014, 4, 12950–12957.
-
(2014)
RSC Adv.
, vol.4
, pp. 12950-12957
-
-
Guo, J.L.1
Liu, J.P.2
-
64
-
-
84936891007
-
3@PEDOT core/shell anode for high-energy asymmetric supercapacitors
-
3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1402176.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1402176
-
-
Zeng, Y.X.1
Han, Y.2
Zhao, Y.T.3
Zeng, Y.4
Yu, M.H.5
Liu, Y.J.6
Tang, H.L.7
Tong, Y.X.8
Lu, X.H.9
-
65
-
-
84903122816
-
Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries
-
Balogun, M.-S.; Yu, M. H.; Li, C.; Zhai, T.; Liu, Y.; Lu, X. H.; Tong, Y. X. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 10825–10829.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 10825-10829
-
-
Balogun, M.-S.1
Yu, M.H.2
Li, C.3
Zhai, T.4
Liu, Y.5
Lu, X.H.6
Tong, Y.X.7
-
66
-
-
84937142566
-
Mater
-
Lu, X.-F.; Chen, X.-Y.; Zhou, W.; Tong, Y.-X.; Li, G.-R. a-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 14843–14850.
-
(2015)
Interfaces
, vol.7
, pp. 14843-14850
-
-
Lu, X.-F.1
Chen, X.-Y.2
Zhou, W.3
Tong, Y.-X.4
-
67
-
-
84875413255
-
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
-
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.
-
(2013)
Nat. Chem.
, vol.5
, pp. 263-275
-
-
Chhowalla, M.1
Shin, H.S.2
Eda, G.3
Li, L.-J.4
Loh, K.P.5
Zhang, H.6
-
68
-
-
84924854984
-
The role of graphene for electrochemical energy storage
-
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.
-
(2015)
Nat. Mater.
, vol.14
, pp. 271-279
-
-
Raccichini, R.1
Varzi, A.2
Passerini, S.3
Scrosati, B.4
-
69
-
-
84938154106
-
Three dimensional architectures: Design, assembly and application in electrochemical capacitors
-
Yu, M. H.; Qiu, W. T.; Wang, F. X.; Zhai, T.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Three dimensional architectures: Design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 2015, 3, 15792–15823.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 15792-15823
-
-
Yu, M.H.1
Qiu, W.T.2
Wang, F.X.3
Zhai, T.4
Fang, P.P.5
Lu, X.H.6
Tong, Y.X.7
-
70
-
-
84901923413
-
Three-dimensional self-supported metal oxides for advanced energy storage
-
Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.
-
(2014)
Adv. Mater.
, vol.26
, pp. 3368-3397
-
-
Ellis, B.L.1
Knauth, P.2
Djenizian, T.3
-
71
-
-
84901619446
-
A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode
-
Chae, C.; Noh, H. J.; Lee, J. K.; Scrosati, B.; Sun, Y. K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 2014, 24, 3036–3042.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 3036-3042
-
-
Chae, C.1
Noh, H.J.2
Lee, J.K.3
Scrosati, B.4
Sun, Y.K.5
-
72
-
-
84879862427
-
3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries
-
3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale 2013, 5, 6485–6490.
-
(2013)
Nanoscale
, vol.5
, pp. 6485-6490
-
-
Duan, W.C.1
Hu, Z.2
Zhang, K.3
Cheng, F.Y.4
Tao, Z.L.5
Chen, J.6
-
73
-
-
84945393073
-
2 nanosheets with high reversible capacity as anode material for lithium ion batteries
-
2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23205–23215.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 23205-23215
-
-
Balogun, M.-S.1
Qiu, W.T.2
Jian, J.H.3
Huang, Y.C.4
Luo, Y.5
Yang, H.6
Liang, C.L.7
Lu, X.H.8
Tong, Y.X.9
-
74
-
-
84920973108
-
2 arrays for highly durable electrodes for Li and Na ion batteries
-
2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565–573.
-
(2015)
Nano Lett.
, vol.15
, pp. 565-573
-
-
Chao, D.L.1
Zhu, C.R.2
Xia, X.H.3
Liu, J.L.4
Zhang, X.5
Wang, J.6
Liang, P.7
Lin, J.Y.8
Zhang, H.9
Shen, Z.X.10
-
75
-
-
84867325745
-
The current move of lithium ion batteries towards the next phase
-
Kim, T.-H.; Park, J.-S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H.-K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860–872.
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 860-872
-
-
Kim, T.-H.1
Park, J.-S.2
Chang, S.K.3
Choi, S.4
Ryu, J.H.5
Song, H.-K.6
-
76
-
-
84893453577
-
Mixed transition-metal oxides: Design, synthesis, and energy-related applications
-
Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. D. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 1488-1504
-
-
Yuan, C.Z.1
Wu, H.B.2
Xie, Y.3
Lou, X.W.D.4
-
77
-
-
84938407954
-
4-S core–shell nanorods for lithium storage
-
4-S core–shell nanorods for lithium storage. Chem. Commun. 2015, 51, 13016–13019.
-
(2015)
Chem. Commun.
, vol.51
, pp. 13016-13019
-
-
Luo, Y.1
Balogun, M.-S.2
Qiu, W.T.3
Zhao, R.R.4
Liu, P.5
Tong, Y.X.6
-
78
-
-
84912095232
-
Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries
-
Balogun, M.-S.; Yu, M. H.; Huang, Y. C.; Li, C.; Fang, P. P.; Liu, Y.; Lu, X. H.; Tong, Y. X. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 2015, 11, 348–355.
-
(2015)
Nano Energy
, vol.11
, pp. 348-355
-
-
Balogun, M.-S.1
Yu, M.H.2
Huang, Y.C.3
Li, C.4
Fang, P.P.5
Liu, Y.6
Lu, X.H.7
Tong, Y.X.8
-
79
-
-
84976384041
-
Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrode for lithium ion batteries and supercapacitors
-
Balogun, M.-S.; Zeng, Y. X.; Qiu, W. T.; Luo, Y.; Onasanya, A.; Olaniyi, T.; Tong, Y. X. Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrode for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2016, 4, 9844–9849.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 9844-9849
-
-
Balogun, M.-S.1
Zeng, Y.X.2
Qiu, W.T.3
Luo, Y.4
Onasanya, A.5
Olaniyi, T.6
Tong, Y.X.7
-
80
-
-
84923693944
-
2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries
-
2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem—Eur. J. 2015, 21, 4359–4367.
-
(2015)
Chem—Eur. J.
, vol.21
, pp. 4359-4367
-
-
Qiu, W.D.1
Jiao, J.Q.2
Xia, J.3
Zhong, H.M.4
Chen, L.P.5
-
81
-
-
84890516314
-
Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites
-
Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 209-231
-
-
Stephenson, T.1
Li, Z.2
Olsen, B.3
Mitlin, D.4
-
82
-
-
0027274122
-
The rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte
-
Plichta, E. J.; Behl, W. K. The rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte. J. Electrochem. Soc. 1993, 140, 46–49.
-
(1993)
J. Electrochem. Soc.
, vol.140
, pp. 46-49
-
-
Plichta, E.J.1
Behl, W.K.2
-
83
-
-
84884902832
-
Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries
-
Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.
-
(2013)
Adv. Mater.
, vol.25
, pp. 4932-4937
-
-
Zhang, C.Z.1
Mahmood, N.2
Yin, H.3
Liu, F.4
Hou, Y.L.5
-
84
-
-
33750621819
-
+ ion storage. Angew. Chem
-
+ ion storage. Angew. Chem., Int. Ed. 2006, 45, 7039–7042.
-
(2006)
Int. Ed.
, vol.45
, pp. 7039-7042
-
-
Wang, Y.1
Lee, J.Y.2
-
85
-
-
67651111790
-
Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage
-
Wang, Y.; Wu, M. H.; Jiao, Z.; Lee, J. Y. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 2009, 21, 3210–3215.
-
(2009)
Chem. Mater.
, vol.21
, pp. 3210-3215
-
-
Wang, Y.1
Wu, M.H.2
Jiao, Z.3
Lee, J.Y.4
-
86
-
-
84978915519
-
-
Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for highperformance lithium-ion batteries., in press
-
Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for highperformance lithium-ion batteries. Adv. Mater., in press, DOI: 10.1002/adma.201503978.
-
Adv. Mater.
-
-
-
87
-
-
0020113612
-
A reversible graphite-lithium negative electrode for electrochemical generators
-
Yazami, R.; Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371.
-
(1983)
J. Power Sources
, vol.9
, pp. 365-371
-
-
Yazami, R.1
Touzain, P.2
-
88
-
-
0037433632
-
Carbon anode materials for lithium ion batteries
-
Wu, Y. P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources 2003, 114, 228–236.
-
(2003)
J. Power Sources
, vol.114
, pp. 228-236
-
-
Wu, Y.P.1
Rahm, E.2
Holze, R.3
-
89
-
-
0032628838
-
Carbon materials for lithium-ion rechargeable batteries
-
Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.
-
(1999)
Carbon
, vol.37
, pp. 165-180
-
-
Flandrois, S.1
Simon, B.2
-
90
-
-
84906231856
-
Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling
-
Yang, L. J.; Cheng, X. Q.; Gao, Y. Z.; Zuo, P. J.; Ma, Y. L.; Du, C. Y.; Shen, B.; Cui, Y. Z.; Guan, T.; Yin, G. P. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling. ACS Appl. Mater. Interfaces 2014, 6, 12962–12970.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 12962-12970
-
-
Yang, L.J.1
Cheng, X.Q.2
Gao, Y.Z.3
Zuo, P.J.4
Ma, Y.L.5
Du, C.Y.6
Shen, B.7
Cui, Y.Z.8
Guan, T.9
Yin, G.P.10
-
91
-
-
33847401833
-
Hard carbon/lithium composite anode materials for Li-ion batteries
-
Sun, H.; He, X. M.; Ren, J. G.; Li, J. J.; Jiang, C. Y.; Wan, C. R. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochim. Acta 2007, 52, 4312–4316.
-
(2007)
Electrochim. Acta
, vol.52
, pp. 4312-4316
-
-
Sun, H.1
He, X.M.2
Ren, J.G.3
Li, J.J.4
Jiang, C.Y.5
Wan, C.R.6
-
92
-
-
33748055423
-
0.4N composite anode materials for Li-ion batteries
-
0.4N composite anode materials for Li-ion batteries. Solid State Ionics 2006, 177, 1331–1334.
-
(2006)
Solid State Ionics
, vol.177
, pp. 1331-1334
-
-
Sun, H.1
He, X.M.2
Li, J.J.3
Ren, J.G.4
Jiang, C.Y.5
Wan, C.R.6
-
93
-
-
84954287950
-
An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode
-
Sun, Y. Z.; Ning, G. Q.; Qi, C. L.; Li, J. C.; Ma, X. L.; Xu, C. G.; Li, Y. F.; Zhang, X.; Gao, J. S. An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode. Electrochim. Acta 2016, 190, 141–149.
-
(2016)
Electrochim. Acta
, vol.190
, pp. 141-149
-
-
Sun, Y.Z.1
Ning, G.Q.2
Qi, C.L.3
Li, J.C.4
Ma, X.L.5
Xu, C.G.6
Li, Y.F.7
Zhang, X.8
Gao, J.S.9
-
94
-
-
0033184968
-
Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes
-
McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. D. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 1999, 81–82, 20–26.
-
(1999)
J. Power Sources
, vol.81-82
, pp. 20-26
-
-
McMillan, R.1
Slegr, H.2
Shu, Z.X.3
Wang, W.D.4
-
95
-
-
0033313765
-
On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
-
Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.
-
(1999)
Electrochim. Acta
, vol.45
, pp. 67-86
-
-
Aurbach, D.1
Markovsky, B.2
Weissman, I.3
Levi, E.4
Ein-Eli, Y.5
-
96
-
-
0027607781
-
Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon
-
Dahn, J. R.; Sleigh, A. K.; Shi, H.; Reimers, J. N.; Zhong, Q.; Way, B. M. Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochim. Acta 1993, 38, 1179–1191.
-
(1993)
Electrochim. Acta
, vol.38
, pp. 1179-1191
-
-
Dahn, J.R.1
Sleigh, A.K.2
Shi, H.3
Reimers, J.N.4
Zhong, Q.5
Way, B.M.6
-
97
-
-
0031246515
-
Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries
-
Menachem, C.; Peled, E.; Burstein, L.; Rosenberg, Y. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J. Power Sources 1997, 68, 277–282.
-
(1997)
J. Power Sources
, vol.68
, pp. 277-282
-
-
Menachem, C.1
Peled, E.2
Burstein, L.3
Rosenberg, Y.4
-
98
-
-
84947288266
-
Polyimide binder: A facile way to improve safety of lithium ion batteries
-
Qian, G. N.; Wang, L.; Shang, Y. M.; He, X. M.; Tang, S. F.; Liu, M.; Li, T. W.; Zhang, G. Q.; Wang, J. L. Polyimide binder: A facile way to improve safety of lithium ion batteries. Electrochim. Acta 2016, 187, 113–118.
-
(2016)
Electrochim. Acta
, vol.187
, pp. 113-118
-
-
Qian, G.N.1
Wang, L.2
Shang, Y.M.3
He, X.M.4
Tang, S.F.5
Liu, M.6
Li, T.W.7
Zhang, G.Q.8
Wang, J.L.9
-
99
-
-
84967289578
-
Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries
-
Hwang, G.; Kim, J.-M.; Hong, D.; Kim, C.-K.; Choi, N.-S.; Lee, S.-Y.; Park, S. Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. Green Chem. 2016, 18, 2710–2716.
-
(2016)
Green Chem.
, vol.18
, pp. 2710-2716
-
-
Hwang, G.1
Kim, J.-M.2
Hong, D.3
Kim, C.-K.4
Choi, N.-S.5
Lee, S.-Y.6
Park, S.7
-
100
-
-
0032315412
-
Characterization of lithiated natural graphite before and after mild oxidation
-
Menachem, C.; Wang, Y.; Flowers, J.; Peled, E.; Greenbaum, S. G. Characterization of lithiated natural graphite before and after mild oxidation. J. Power Sources 1998, 76, 180–185.
-
(1998)
J. Power Sources
, vol.76
, pp. 180-185
-
-
Menachem, C.1
Wang, Y.2
Flowers, J.3
Peled, E.4
Greenbaum, S.G.5
-
101
-
-
33847331205
-
Lithium-ion batteries based on carbon–silicon–graphite composite anodes
-
Khomenko, V. G.; Barsukov, V. Z.; Doninger, J. E.; Barsukov, I. V. Lithium-ion batteries based on carbon–silicon–graphite composite anodes. J. Power Sources 2007, 165, 598–608.
-
(2007)
J. Power Sources
, vol.165
, pp. 598-608
-
-
Khomenko, V.G.1
Barsukov, V.Z.2
Doninger, J.E.3
Barsukov, I.V.4
-
103
-
-
84927942479
-
Additive-free thick graphene film as an anode material for flexible lithium-ion batteries
-
Rana, K.; Kim, S. D.; Ahn, J.-H. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries. Nanoscale 2015, 7, 7065–7071.
-
(2015)
Nanoscale
, vol.7
, pp. 7065-7071
-
-
Rana, K.1
Kim, S.D.2
Ahn, J.-H.3
-
104
-
-
84929380202
-
An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg
-
Zhai, T.; Lu, X. H.; Wang, H. Y.; Wang, G. M.; Mathis, T.; Liu, T. Y.; Li, C.; Tong, Y. X.; Li, Y. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett. 2015, 15, 3189–3194.
-
(2015)
Nano Lett.
, vol.15
, pp. 3189-3194
-
-
Zhai, T.1
Lu, X.H.2
Wang, H.Y.3
Wang, G.M.4
Mathis, T.5
Liu, T.Y.6
Li, C.7
Tong, Y.X.8
Li, Y.9
-
105
-
-
77954936502
-
Graphene-based materials in electrochemistry
-
Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 3157-3180
-
-
Chen, D.1
Tang, L.H.2
Li, J.H.3
-
106
-
-
84924917744
-
Deficiencies of chemically reduced graphene as electrode in full Li-ion cells
-
Vargas, Ó.; Caballero, Á.; Morales, J. Deficiencies of chemically reduced graphene as electrode in full Li-ion cells. Electrochim. Acta 2015, 165, 365–371.
-
(2015)
Electrochim. Acta
, vol.165
, pp. 365-371
-
-
Vargas, Ó.1
Caballero, Á.2
Morales, J.3
-
107
-
-
84906076643
-
An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode
-
Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906.
-
(2014)
Nano Lett.
, vol.14
, pp. 4901-4906
-
-
Hassoun, J.1
Bonaccorso, F.2
Agostini, M.3
Angelucci, M.4
Betti, M.G.5
Cingolani, R.6
Gemmi, M.7
Mariani, C.8
Panero, S.9
Pellegrini, V.10
-
108
-
-
84896385792
-
Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries
-
Vargas, Ó.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 3290–3298.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 3290-3298
-
-
Vargas, Ó.1
Caballero, Á.2
Morales, J.3
Rodríguez-Castellón, E.4
-
109
-
-
84887899089
-
Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell
-
Vargas, Ó.; Caballero, Á.; Morales, J.; Elia, G. A.; Scrosati, B.; Hassoun, J. Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Phys. Chem. Chem. Phys. 2013, 15, 20444–20446.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 20444-20446
-
-
Vargas, Ó.1
Caballero, Á.2
Morales, J.3
Elia, G.A.4
Scrosati, B.5
Hassoun, J.6
-
110
-
-
33846502688
-
Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries
-
Khomenko, V. G.; Barsukov, V. Z. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries. Electrochim. Acta 2007, 52, 2829–2840.
-
(2007)
Electrochim. Acta
, vol.52
, pp. 2829-2840
-
-
Khomenko, V.G.1
Barsukov, V.Z.2
-
111
-
-
77954908012
-
Li-alloy based anode materials for Li secondary batteries
-
Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 3115-3141
-
-
Park, C.-M.1
Kim, J.-H.2
Kim, H.3
Sohn, H.-J.4
-
112
-
-
84930221702
-
2/carbon lithium-ion battery anodes with high capacity and high reversibility
-
2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 2015, 9, 5299–5309.
-
(2015)
ACS Nano
, vol.9
, pp. 5299-5309
-
-
Hwang, J.1
Jo, C.2
Kim, M.G.3
Chun, J.4
Lim, E.5
Kim, S.6
Jeong, S.7
Kim, Y.8
Lee, J.9
-
113
-
-
84946201953
-
Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells
-
Huang, Y. L.; Hou, X. H.; Fan, X. Y.; Ma, S. M.; Hu, S. J.; Lam, K.-H. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 2015, 182, 1175–1187.
-
(2015)
Electrochim. Acta
, vol.182
, pp. 1175-1187
-
-
Huang, Y.L.1
Hou, X.H.2
Fan, X.Y.3
Ma, S.M.4
Hu, S.J.5
Lam, K.-H.6
-
114
-
-
84921534910
-
Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery
-
Eom, K.; Jung, J.; Lee, J. T.; Lair, V.; Joshi, T.; Lee, S. W.; Lin, Z. Q.; Fuller, T. F. Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 2015, 12, 314–321.
-
(2015)
Nano Energy
, vol.12
, pp. 314-321
-
-
Eom, K.1
Jung, J.2
Lee, J.T.3
Lair, V.4
Joshi, T.5
Lee, S.W.6
Lin, Z.Q.7
Fuller, T.F.8
-
115
-
-
84935850810
-
Tissue-like silicon nanowiresbased three-dimensional anodes for high-capacity lithium ion batteries
-
Peled, E.; Patolsky, F.; Golodnitsky, D.; Freedman, K.; Davidi, G.; Schneier, D. Tissue-like silicon nanowiresbased three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett. 2015, 15, 3907–3916.
-
(2015)
Nano Lett.
, vol.15
, pp. 3907-3916
-
-
Peled, E.1
Patolsky, F.2
Golodnitsky, D.3
Freedman, K.4
Davidi, G.5
Schneier, D.6
-
117
-
-
84920263223
-
Preparation and electrochemical evaluation of manganese ferrite spheres as anode materials for half and full lithium-ion batteries
-
Wang, G.; Wang, H.; Bai, J. T. Preparation and electrochemical evaluation of manganese ferrite spheres as anode materials for half and full lithium-ion batteries. J. Alloy. Compd. 2015, 627, 174–181.
-
(2015)
J. Alloy. Compd.
, vol.627
, pp. 174-181
-
-
Wang, G.1
Wang, H.2
Bai, J.T.3
-
118
-
-
84977839341
-
2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries
-
2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.
-
(2016)
Adv. Mater.
, vol.28
, pp. 4126-4133
-
-
Wang, N.1
Bai, Z.C.2
Qian, Y.T.3
Yang, J.4
-
119
-
-
84923404857
-
Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery
-
Li, X. W.; Yang, Z. B.; Fu, Y. J.; Qiao, L.; Li, D.; Yue, H. W.; He, D. Y. Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 2015, 9, 1858–1867.
-
(2015)
ACS Nano
, vol.9
, pp. 1858-1867
-
-
Li, X.W.1
Yang, Z.B.2
Fu, Y.J.3
Qiao, L.4
Li, D.5
Yue, H.W.6
He, D.Y.7
-
120
-
-
84862660267
-
4 lithium ion battery
-
4 lithium ion battery. J. Power Sources 2012, 217, 72–76.
-
(2012)
J. Power Sources
, vol.217
, pp. 72-76
-
-
Brutti, S.1
Hassoun, J.2
Scrosati, B.3
Lin, C.-Y.4
Wu, H.5
Hsieh, H.-W.6
-
121
-
-
84959273217
-
Rusted iron wire waste into high performance anode (a-Fe2O3) for Li-ion batteries: An efficient waste management approach
-
Mhamane, D.; Kim, H.-K.; Aravindan, V.; Roh, K. C.; Srinivasan, M.; Kim, K.-B. Rusted iron wire waste into high performance anode (a-Fe2O3) for Li-ion batteries: An efficient waste management approach. Green Chem. 2016, 18, 1395–1404.
-
(2016)
Green Chem.
, vol.18
, pp. 1395-1404
-
-
Mhamane, D.1
Kim, H.-K.2
Aravindan, V.3
Roh, K.C.4
Srinivasan, M.5
Kim, K.-B.6
-
122
-
-
34548626482
-
Nanostructured Sn–C composite as an advanced anode material in high-performance Lithium-ion batteries
-
Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance Lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.
-
(2007)
Adv. Mater.
, vol.19
, pp. 2336-2340
-
-
Derrien, G.1
Hassoun, J.2
Panero, S.3
Scrosati, B.4
-
123
-
-
84910673171
-
4 lithium-ion battery operating at low temperature
-
4 lithium-ion battery operating at low temperature. J. Power Sources 2015, 275, 227–233.
-
(2015)
J. Power Sources
, vol.275
, pp. 227-233
-
-
Elia, G.A.1
Nobili, F.2
Tossici, R.3
Marassi, R.4
Savoini, A.5
Panero, S.6
Hassoun, J.7
-
124
-
-
84908432712
-
Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof
-
Ni, W.; Cheng, J. L.; Shi, L. Y.; Li, X. D.; Wang, B.; Guan, Q.; Huang, L.; Gu, G. F.; Li, H. Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof. J. Mater. Chem. A 2014, 2, 19122–19130.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 19122-19130
-
-
Ni, W.1
Cheng, J.L.2
Shi, L.Y.3
Li, X.D.4
Wang, B.5
Guan, Q.6
Huang, L.7
Gu, G.F.8
Li, H.9
-
125
-
-
79952362065
-
Graphene-based nanomaterials for energy storage
-
Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 668-674
-
-
Pumera, M.1
-
126
-
-
84906685819
-
Electrochemistry of graphene and related materials
-
Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188.
-
(2014)
Chem. Rev.
, vol.114
, pp. 7150-7188
-
-
Ambrosi, A.1
Chua, C.K.2
Bonanni, A.3
Pumera, M.4
-
127
-
-
84855393828
-
Graphene-based composites
-
Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 666-686
-
-
Huang, X.1
Qi, X.Y.2
Boey, F.3
Zhang, H.4
-
128
-
-
84903941157
-
Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries
-
Sun, W.; Hu, R. Z.; Liu, H.; Zeng, M. Q.; Yang, L. C.; Wang, H. H.; Zhu, M. Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J. Power Sources 2014, 268, 610–618.
-
(2014)
J. Power Sources
, vol.268
, pp. 610-618
-
-
Sun, W.1
Hu, R.Z.2
Liu, H.3
Zeng, M.Q.4
Yang, L.C.5
Wang, H.H.6
Zhu, M.7
-
129
-
-
84887960146
-
The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode
-
Eom, K.; Joshi, T.; Bordes, A.; Do, I.; Fuller, T. F. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. J. Power Sources 2014, 249, 118–124.
-
(2014)
J. Power Sources
, vol.249
, pp. 118-124
-
-
Eom, K.1
Joshi, T.2
Bordes, A.3
Do, I.4
Fuller, T.F.5
-
130
-
-
84863115825
-
Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells
-
Ji, L. W.; Zheng, H. H.; Ismach, A.; Tan, Z. K.; Xun, S. D.; Lin, E.; Battaglia, V.; Srinivasan, V.; Zhang, Y. G. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 2012, 1, 164–171.
-
(2012)
Nano Energy
, vol.1
, pp. 164-171
-
-
Ji, L.W.1
Zheng, H.H.2
Ismach, A.3
Tan, Z.K.4
Xun, S.D.5
Lin, E.6
Battaglia, V.7
Srinivasan, V.8
Zhang, Y.G.9
-
132
-
-
84904296258
-
2 anode by electrospinning
-
2 anode by electrospinning. Nanoscale 2014, 6, 8926–8934.
-
(2014)
Nanoscale
, vol.6
, pp. 8926-8934
-
-
Arun, N.1
Aravindan, V.2
Jayaraman, S.3
Shubha, N.4
Ling, W.C.5
Ramakrishna, S.6
Madhavi, S.7
-
133
-
-
84915814993
-
2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties
-
2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 12590-12593
-
-
Zhang, G.Q.1
Wu, H.B.2
Song, T.3
Paik, U.4
Lou, X.W.5
-
135
-
-
84966389303
-
2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery
-
2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 2016, 25, 80–90.
-
(2016)
Nano Energy
, vol.25
, pp. 80-90
-
-
Liu, Y.1
Elzatahry, A.A.2
Luo, W.3
Lan, K.4
Zhang, P.F.5
Fan, J.W.6
Wei, Y.7
Wang, C.8
Deng, Y.H.9
Zheng, G.F.10
-
137
-
-
84860851918
-
12 anode of a lithium-ion battery
-
12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 7874-7879
-
-
Wang, Y.-Q.1
Gu, L.2
Guo, Y.-G.3
Li, H.4
He, X.-Q.5
Tsukimoto, S.6
Ikuhara, Y.7
Wan, L.-J.8
-
138
-
-
84915770385
-
Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries
-
Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z. et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 126, 13706–13710.
-
(2014)
Angew. Chem., Int. Ed.
, vol.126
, pp. 13706-13710
-
-
Tang, Y.X.1
Zhang, Y.Y.2
Deng, J.Y.3
Qi, D.P.4
Leow, W.R.5
Wei, J.Q.6
Yin, S.Y.7
Dong, Z.L.8
Yazami, R.9
Chen, Z.10
-
139
-
-
84863908323
-
High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis
-
Fröschl, T.; Hörmann, U.; Kubiak, P.; Kucerová, G.; Pfanzelt, M.; Weiss, C. K.; Behm, R. J.; Hüsing, N.; Kaiser, U.; Landfester, K. et al. High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev. 2012, 41, 5313–5360.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 5313-5360
-
-
Fröschl, T.1
Hörmann, U.2
Kubiak, P.3
Kucerová, G.4
Pfanzelt, M.5
Weiss, C.K.6
Behm, R.J.7
Hüsing, N.8
Kaiser, U.9
Landfester, K.10
-
140
-
-
84882389215
-
Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries
-
Myung, S.-T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2609-2614
-
-
Myung, S.-T.1
Kikuchi, M.2
Yoon, C.S.3
Yashiro, H.4
Kim, S.-J.5
Sun, Y.-K.6
Scrosati, B.7
-
141
-
-
80055042372
-
2 hollow nanofibers as an anode material for high power lithium ion batteries
-
2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ. Sci. 2011, 4, 4532–4536.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4532-4536
-
-
Han, H.1
Song, T.2
Bae, J.-Y.3
Nazar, L.F.4
Kim, H.5
Paik, U.6
-
142
-
-
84880153446
-
2 nanofibers for lithium ion batteries
-
2 nanofibers for lithium ion batteries. J. Phys. Chem. C 2013, 117, 13827–13835.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 13827-13835
-
-
Fehse, M.1
Cavaliere, S.2
Lippens, P.E.3
Savych, I.4
Iadecola, A.5
Monconduit, L.6
Jones, D.J.7
Rozière, J.8
Fischer, F.9
Tessier, C.10
-
143
-
-
84908181170
-
Titania–carbon nanocomposite anodes for lithium ion batteries—effects of confined growth and phase synergism
-
Petkovich, N. D.; Wilson, B. E.; Rudisill, S. G.; Stein, A. Titania–carbon nanocomposite anodes for lithium ion batteries—effects of confined growth and phase synergism. ACS Appl. Mater. Interfaces 2014, 6, 18215–18227.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 18215-18227
-
-
Petkovich, N.D.1
Wilson, B.E.2
Rudisill, S.G.3
Stein, A.4
-
144
-
-
84899949851
-
2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries
-
2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 2014, 7, 491–501.
-
(2014)
Nano Res.
, vol.7
, pp. 491-501
-
-
Song, T.1
Han, H.2
Choi, H.3
Lee, J.W.4
Park, H.5
Lee, S.6
Park, W.7
Kim, S.8
Liu, L.9
Paik, U.10
-
145
-
-
84908551448
-
2 nanotube electrodes for single and complete lithium-ion batteries
-
2 nanotube electrodes for single and complete lithium-ion batteries. J. Power Sources 2015, 273, 1182–1188.
-
(2015)
J. Power Sources
, vol.273
, pp. 1182-1188
-
-
Plylahan, N.1
Letiche, M.2
Barr, M.K.S.3
Ellis, B.4
Maria, S.5
Phan, T.N.T.6
Bloch, E.7
Knauth, P.8
Djenizian, T.9
-
147
-
-
84871581822
-
2/graphene nanostructured composite with high-rate performance for lithium ion batteries
-
2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 2012, 6, 11035–11043.
-
(2012)
ACS Nano
, vol.6
, pp. 11035-11043
-
-
Xin, X.1
Zhou, X.F.2
Wu, J.H.3
Yao, X.Y.4
Liu, Z.P.5
-
148
-
-
84883225236
-
2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate
-
2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nanoscale 2013, 5, 5973–5980.
-
(2013)
Nanoscale
, vol.5
, pp. 5973-5980
-
-
Zhang, X.1
Aravindan, V.2
Kumar, P.S.3
Liu, H.4
Sundaramurthy, J.5
Ramakrishna, S.6
Madhavi, S.7
-
149
-
-
84899863863
-
All-solid-state lithium-ion batteries based on self-supported titania nanotubes
-
Plylahan, N.; Letiche, M.; Barr, M. K. S.; Djenizian, T. All-solid-state lithium-ion batteries based on self-supported titania nanotubes. Electrochem. Commun. 2014, 43, 121–124.
-
(2014)
Electrochem. Commun.
, vol.43
, pp. 121-124
-
-
Plylahan, N.1
Letiche, M.2
Barr, M.K.S.3
Djenizian, T.4
-
150
-
-
84871054585
-
2 nanofibers with spinel cathode
-
2 nanofibers with spinel cathode. RSC Adv. 2012, 2, 7983–7987.
-
(2012)
RSC Adv.
, vol.2
, pp. 7983-7987
-
-
Kumar, P.S.1
Aravindan, V.2
Sundaramurthy, J.3
Thavasi, V.4
Mhaisalkar, S.G.5
Ramakrishna, S.6
Madhavi, S.7
-
153
-
-
84908142762
-
4
-
4. J. Mater. Chem. A 2014, 2, 18938–18945.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 18938-18945
-
-
Ming, H.1
Ming, J.2
Oh, S.-M.3
Lee, E.-J.4
Huang, H.5
Zhou, Q.6
Zheng, J.W.7
Sun, Y.-K.8
-
154
-
-
85027932785
-
3 core–shell nanowire array anode for high energy and power density lithium-ion batteries
-
3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3524–3533.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 3524-3533
-
-
Wang, C.1
Wu, L.X.2
Wang, H.3
Zuo, W.H.4
Li, Y.Y.5
Liu, J.P.6
-
155
-
-
84864248159
-
Nanoscale porous framework of lithium titanate for ultrafast lithium insertion
-
Feckl, J. M.; Fominykh, K.; Döblinger, M.; Fattakhova-Rohlfing, D.; Bein, T. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem., Int. Ed. 2012, 51, 7459–7463.
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 7459-7463
-
-
Feckl, J.M.1
Fominykh, K.2
Döblinger, M.3
Fattakhova-Rohlfing, D.4
Bein, T.5
-
158
-
-
79953660835
-
12 as ultra high power anode material for lithium batteries
-
12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345–1351.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1345-1351
-
-
Jung, H.-G.1
Myung, S.-T.2
Yoon, C.S.3
Son, S.-B.4
Oh, K.H.5
Amine, K.6
Scrosati, B.7
Sun, Y.-K.8
-
159
-
-
84860385499
-
Ti-based compounds as anode materials for Li-ion batteries
-
Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6652-6667
-
-
Zhu, G.-N.1
Wang, Y.-G.2
Xia, Y.-Y.3
-
160
-
-
46749156838
-
12 cells
-
12 cells. J. Power Sources 2008, 183, 355–360.
-
(2008)
J. Power Sources
, vol.183
, pp. 355-360
-
-
Xiang, H.F.1
Zhang, X.2
Jin, Q.Y.3
Zhang, C.P.4
Chen, C.H.5
Ge, X.W.6
-
161
-
-
84855563521
-
4 power battery
-
4 power battery. J. Solid State Electr. 2012, 16, 265–271.
-
(2012)
J. Solid State Electr.
, vol.16
, pp. 265-271
-
-
Cui, W.1
He, Y.-B.2
Tang, Z.-Y.3
Yang, Q.-H.4
Xu, Q.5
Su, F.-Y.6
Ma, L.7
-
162
-
-
70350709930
-
12 for high rate Li-ion batteries
-
12 for high rate Li-ion batteries. J. Electrochem. Soc. 2009, 156, A1041–A1046.
-
(2009)
J. Electrochem. Soc.
, vol.156
, pp. A1041-A1046
-
-
Jaiswal, A.1
Horne, C.R.2
Chang, O.3
Zhang, W.4
Kong, W.5
Wang, E.6
Chern, T.7
Doeff, M.M.8
-
163
-
-
84961262903
-
Adv
-
Liu, W.; Chen, Z.; Zhou, G. M.; Sun, Y. M.; Lee, H. R.; Liu, C.; Yao, H. B.; Bao, Z.; Cui, Y. 3D porous spongeinspired electrode for stretchable lithium-ion batteries. Adv. Mater. 2016, 28, 3578–3583.
-
(2016)
Mater.
, vol.28
, pp. 3578-3583
-
-
Liu, W.1
Chen, Z.2
Zhou, G.M.3
Sun, Y.M.4
Lee, H.R.5
Liu, C.6
Yao, H.B.7
Bao, Z.8
-
165
-
-
84883345179
-
High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications
-
Takami, N.; Inagaki, H.; Tatebayashi, Y.; Saruwatari, H.; Honda, K.; Egusa, S. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J. Power Sources 2013, 244, 469–475.
-
(2013)
J. Power Sources
, vol.244
, pp. 469-475
-
-
Takami, N.1
Inagaki, H.2
Tatebayashi, Y.3
Saruwatari, H.4
Honda, K.5
Egusa, S.6
-
169
-
-
84906852463
-
12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries
-
12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. RSC Adv. 2014, 4, 38568–38574.
-
(2014)
RSC Adv.
, vol.4
, pp. 38568-38574
-
-
Du, G.D.1
Winton, B.R.2
Hashim, I.M.3
Sharma, N.4
Konstantinov, K.5
Reddy, M.V.6
Guo, Z.P.7
-
170
-
-
84873351289
-
7 nanocomposite as an anode material for Li-ion batteries
-
7 nanocomposite as an anode material for Li-ion batteries. Adv. Funct. Mater. 2013, 23, 640–647.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 640-647
-
-
Zhu, G.-N.1
Chen, L.2
Wang, Y.-G.3
Wang, C.-X.4
Che, R.-C.5
Xia, Y.-Y.6
-
171
-
-
80053323005
-
12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries
-
12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4016
-
-
Zhu, G.-N.1
Liu, H.-J.2
Zhuang, J.-H.3
Wang, C.-X.4
Wang, Y.-G.5
Xia, Y.-Y.6
-
172
-
-
84923256345
-
12-based high-performance lithium-ion electrode at elevated temperature
-
12-based high-performance lithium-ion electrode at elevated temperature. J. Mater. Chem. A 2015, 3, 4938–4944.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 4938-4944
-
-
Guo, J.L.1
Zou, W.H.2
Cai, Y.J.3
Chen, S.M.4
Zhang, S.J.5
Liu, J.P.6
-
173
-
-
84902491236
-
7 anode in all one-dimensional architecture by electrospinning
-
7 anode in all one-dimensional architecture by electrospinning. ACS Appl. Mater. Interfaces 2014, 6, 8660–8666.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 8660-8666
-
-
Jayaraman, S.1
Aravindan, V.2
Kumar, P.S.3
Ling, W.C.4
Ramakrishna, S.5
Madhavi, S.6
-
174
-
-
84905495071
-
3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries
-
3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries. RSC Adv. 2014, 4, 31672–31677.
-
(2014)
RSC Adv.
, vol.4
, pp. 31672-31677
-
-
Roh, H.-K.1
Kim, H.-K.2
Roh, K.C.3
Kim, K.-B.4
-
177
-
-
79955071407
-
New anode framework for rechargeable lithium batteries
-
Han, J.-T.; Huang, Y.-H.; Goodenough, J. B. New anode framework for rechargeable lithium batteries. Chem. Mater. 2011, 23, 2027–2029.
-
(2011)
Chem. Mater.
, vol.23
, pp. 2027-2029
-
-
Han, J.-T.1
Huang, Y.-H.2
Goodenough, J.B.3
-
178
-
-
84902966865
-
7 anode for large-scale electrical energy storage
-
7 anode for large-scale electrical energy storage. Energy Environ. Sci. 2014, 7, 2220–2226.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2220-2226
-
-
Guo, B.K.1
Yu, X.Q.2
Sun, X.-G.3
Chi, M.F.4
Qiao, Z.-A.5
Liu, J.6
Hu, Y.-S.7
Yang, X.-Q.8
Goodenough, J.B.9
Dai, S.10
-
179
-
-
84907842513
-
4 battery
-
4 battery. ACS Appl. Mater. Interfaces 2014, 6, 15499–15509.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 15499-15509
-
-
Ming, H.1
Ming, J.2
Oh, S.-M.3
Tian, S.4
Zhou, Q.5
Huang, H.6
Sun, Y.-K.7
Zheng, J.W.8
-
181
-
-
84923253672
-
Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility
-
Xiong, P.; Peng, L. L.; Chen, D. H.; Zhao, Y.; Wang, X.; Yu, G. H. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 2015, 12, 816–823.
-
(2015)
Nano Energy
, vol.12
, pp. 816-823
-
-
Xiong, P.1
Peng, L.L.2
Chen, D.H.3
Zhao, Y.4
Wang, X.5
Yu, G.H.6
-
182
-
-
84911938003
-
Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective
-
Wang, Z. Y.; Liu, C.-J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015, 11, 277–293.
-
(2015)
Nano Energy
, vol.11
, pp. 277-293
-
-
Wang, Z.Y.1
Liu, C.-J.2
-
183
-
-
84928473931
-
4 towards a full battery with robust capability
-
4 towards a full battery with robust capability. Electrochim. Acta 2015, 169, 291–299.
-
(2015)
Electrochim. Acta
, vol.169
, pp. 291-299
-
-
Ming, H.1
Ming, J.2
Kwak, W.-J.3
Yang, W.J.4
Zhou, Q.5
Zheng, J.W.6
Sun, Y.-K.7
-
184
-
-
84926442601
-
4 nanoparticles for lithium ion storage
-
4 nanoparticles for lithium ion storage. New J. Chem. 2015, 39, 2651–2656.
-
(2015)
New J. Chem.
, vol.39
, pp. 2651-2656
-
-
Liang, C.L.1
Huang, S.C.2
Zhao, W.X.3
Liu, W.Y.4
Chen, J.5
Liu, H.6
Tong, Y.X.7
-
185
-
-
84899439865
-
4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage
-
4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage. J. Mater. Chem. A 2014, 2, 7214–7220.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 7214-7220
-
-
Liang, C.L.1
Zhai, T.2
Wang, W.3
Chen, J.4
Zhao, W.X.5
Lu, X.H.6
Tong, Y.X.7
-
186
-
-
84963739696
-
4
-
4. Energy Stor. Mater. 2015, 1, 152–157.
-
(2015)
Energy Stor. Mater.
, vol.1
, pp. 152-157
-
-
Suryawanshi, A.1
Aravindan, V.2
Mhamane, D.3
Yadav, P.4
Patil, S.5
Madhavi, S.6
Ogale, S.7
-
189
-
-
84878069053
-
Developing a light weight lithium ion battery—An effective material and electrode design for high performance conversion anodes
-
Hariharan, S.; Ramar, V.; Joshi, S. P.; Balaya, P. Developing a light weight lithium ion battery—An effective material and electrode design for high performance conversion anodes. RSC Adv. 2013, 3, 6386–6394.
-
(2013)
RSC Adv.
, vol.3
, pp. 6386-6394
-
-
Hariharan, S.1
Ramar, V.2
Joshi, S.P.3
Balaya, P.4
-
190
-
-
84912033847
-
4 cathode
-
4 cathode. RSC Adv. 2014, 4, 61855–61862.
-
(2014)
RSC Adv.
, vol.4
, pp. 61855-61862
-
-
Verrelli, R.1
Brescia, R.2
Scarpellini, A.3
Manna, L.4
Scrosati, B.5
Hassoun, J.6
-
192
-
-
84939265826
-
2O/CuO core–shell nanowire heterostructures for lithium-ion batteries
-
2O/CuO core–shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763–2776.
-
(2015)
Nano Res.
, vol.8
, pp. 2763-2776
-
-
Zhao, Y.X.1
Zhang, Y.2
Zhao, H.3
Li, X.J.4
Li, Y.P.5
Wen, L.6
Yan, Z.F.7
Huo, Z.Y.8
-
195
-
-
84941561897
-
2 nanoparticles
-
2 nanoparticles. ChemElectroChem 2015, 2, 1243–1248.
-
(2015)
ChemElectroChem
, vol.2
, pp. 1243-1248
-
-
Balogun, M.-S.1
Qiu, W.T.2
Luo, Y.3
Huang, Y.C.4
Yang, H.5
Li, M.Y.6
Yu, M.H.7
Liang, C.L.8
Fang, P.P.9
Liu, P.10
-
196
-
-
80755125655
-
MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
-
Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830.
-
(2011)
Nano Lett.
, vol.11
, pp. 4826-4830
-
-
Hwang, H.1
Kim, H.2
Cho, J.3
-
197
-
-
84910122909
-
Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism
-
Jian, Z. L.; Han, W. Z.; Liang, Y. L.; Lan, Y. C.; Fang, Z.; Hu, Y.-S.; Yao, Y. Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2014, 2, 20231–20236.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 20231-20236
-
-
Jian, Z.L.1
Han, W.Z.2
Liang, Y.L.3
Lan, Y.C.4
Fang, Z.5
Hu, Y.-S.6
Yao, Y.7
-
198
-
-
84893316328
-
Rhombohedral NASICONstructured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage
-
Zhang, Y.; Nie, P.; Shen, L. F.; Xu, G. Y.; Deng, H. F.; Luo, H. F.; Zhang, X. G. Rhombohedral NASICONstructured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Adv. 2014, 4, 8627–8631.
-
(2014)
RSC Adv.
, vol.4
, pp. 8627-8631
-
-
Zhang, Y.1
Nie, P.2
Shen, L.F.3
Xu, G.Y.4
Deng, H.F.5
Luo, H.F.6
Zhang, X.G.7
-
199
-
-
24944479025
-
Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries
-
Whittingham, M. S.; Song, Y. N.; Lutta, S.; Zavalij, P. Y.; Chernova, N. A. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 2005, 15, 3362–3379.
-
(2005)
J. Mater. Chem.
, vol.15
, pp. 3362-3379
-
-
Whittingham, M.S.1
Song, Y.N.2
Lutta, S.3
Zavalij, P.Y.4
Chernova, N.A.5
-
201
-
-
85015495162
-
4/C octahedra with hollow interiors for high-rate lithium-ion batteries
-
4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6622-6628
-
-
Zou, F.1
Hu, X.L.2
Li, Z.3
Qie, L.4
Hu, C.C.5
Zeng, R.6
Jiang, Y.7
Huang, Y.H.8
-
202
-
-
84955443544
-
Metal organic frameworks for energy storage and conversion
-
Zhao, Y.; Song, Z. X.; Li, X.; Sun, Q.; Cheng, N. C.; Lawes, S.; Sun, X. L. Metal organic frameworks for energy storage and conversion. Energy Stor. Mater. 2016, 2, 35–62.
-
(2016)
Energy Stor. Mater.
, vol.2
, pp. 35-62
-
-
Zhao, Y.1
Song, Z.X.2
Li, X.3
Sun, Q.4
Cheng, N.C.5
Lawes, S.6
Sun, X.L.7
-
203
-
-
84956551418
-
Bimetallic coordination polymer as a promising anode material for lithium-ion batteries
-
Li, C.; Hu, X. S.; Lou, X. B.; Chen, Q.; Hu, B. W. Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem. Commun. 2016, 52, 2035–2038.
-
(2016)
Chem. Commun.
, vol.52
, pp. 2035-2038
-
-
Li, C.1
Hu, X.S.2
Lou, X.B.3
Chen, Q.4
Hu, B.W.5
-
204
-
-
84964584147
-
2 with an intercalation reaction as a long-life anode material for lithium ion batteries
-
2 with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorg. Chem. Front. 2016, 3, 532–535.
-
(2016)
Inorg. Chem. Front.
, vol.3
, pp. 532-535
-
-
Hu, Z.1
Liu, Q.N.2
Sun, W.Y.3
Li, W.J.4
Tao, Z.L.5
Chou, S.-L.6
Chen, J.7
Dou, S.-X.8
-
205
-
-
0017930769
-
4 and other new Li+ superionic conductors
-
4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117–124.
-
(1978)
Mater. Res. Bull.
, vol.13
, pp. 117-124
-
-
Hong, H.Y.P.1
-
207
-
-
84908012487
-
-
3. 2014, 147, 498–505
-
3. Electrochim. Acta 2014, 147, 498–505.
-
(2014)
Electrochim. Acta
-
-
-
208
-
-
84908307004
-
In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwaveassisted chemical lithiation process
-
Moorhead-Rosenberg, Z.; Allcorn, E.; Manthiram, A. In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwaveassisted chemical lithiation process. Chem. Mater. 2014, 26, 5905–5913.
-
(2014)
Chem. Mater.
, vol.26
, pp. 5905-5913
-
-
Moorhead-Rosenberg, Z.1
Allcorn, E.2
Manthiram, A.3
-
209
-
-
0017019824
-
Performance characteristics of solid lithium-aluminum alloy electrodes
-
Gay, E. C.; Vissers, D. R.; Martino, F. J.; Anderson, K. E. Performance characteristics of solid lithium-aluminum alloy electrodes. J. Electrochem. Soc. 1976, 123, 1591–1596.
-
(1976)
J. Electrochem. Soc.
, vol.123
, pp. 1591-1596
-
-
Gay, E.C.1
Vissers, D.R.2
Martino, F.J.3
Anderson, K.E.4
-
210
-
-
84939203693
-
High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity
-
Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6, 7872.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7872
-
-
Li, S.1
Niu, J.J.2
Zhao, Y.C.3
So, K.P.4
Wang, C.5
Wang, C.A.6
Li, J.7
-
211
-
-
84928402748
-
An ultrafast rechargeable aluminium-ion battery
-
Lin, M.-C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D.-Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B.-J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.
-
(2015)
Nature
, vol.520
, pp. 324-328
-
-
Lin, M.-C.1
Gong, M.2
Lu, B.G.3
Wu, Y.P.4
Wang, D.-Y.5
Guan, M.Y.6
Angell, M.7
Chen, C.X.8
Yang, J.9
Hwang, B.-J.10
-
212
-
-
84925740284
-
Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage
-
Zhang, C. J.; Lin, Z.; Yang, Z. Z.; Xiao, D. D.; Hu, P.; Xu, H. X.; Duan, Y. L.; Pang, S. P.; Gu, L.; Cui, G. L. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage. Chem. Mater. 2015, 27, 2189–2194.
-
(2015)
Chem. Mater.
, vol.27
, pp. 2189-2194
-
-
Zhang, C.J.1
Lin, Z.2
Yang, Z.Z.3
Xiao, D.D.4
Hu, P.5
Xu, H.X.6
Duan, Y.L.7
Pang, S.P.8
Gu, L.9
Cui, G.L.10
-
213
-
-
84975090270
-
-
2 nanofibers as new cathode for constructing 1. 6 V class “rocking-chair” type Li-ion cells. in press
-
2 nanofibers as new cathode for constructing 1. 6 V class “rocking-chair” type Li-ion cells. Part. Part. Syst. Char., in press, DOI: 10.1002/ppsc.201600044.
-
Part. Part. Syst. Char.
-
-
-
214
-
-
84941140984
-
Carbon-encapsulated pyrite as stable and earthabundant high energy cathode material for rechargeable lithium batteries
-
Liu, J.; Wen, Y. R.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earthabundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025–6030.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6025-6030
-
-
Liu, J.1
Wen, Y.R.2
Wang, Y.3
van Aken, P.A.4
Maier, J.5
Yu, Y.6
-
215
-
-
84966394754
-
2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries
-
2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9733–9744.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 9733-9744
-
-
Balogun, M.-S.1
Luo, Y.2
Lyu, F.3
Wang, F.X.4
Yang, H.5
Li, H.B.6
Liang, C.L.7
Huang, M.8
Huang, Y.C.9
Tong, Y.X.10
-
216
-
-
84903167483
-
L-cysteine-assisted synthesis of cubic pyrite/ nitrogen-doped graphene composite as anode material for lithium-ion batteries
-
Qiu, W. D.; Xia, J.; Zhong, H. M.; He, S. X.; Lai, S. H.; Chen, L. P. L-cysteine-assisted synthesis of cubic pyrite/ nitrogen-doped graphene composite as anode material for lithium-ion batteries. Electrochim. Acta 2014, 137, 197–205.
-
(2014)
Electrochim. Acta
, vol.137
, pp. 197-205
-
-
Qiu, W.D.1
Xia, J.2
Zhong, H.M.3
He, S.X.4
Lai, S.H.5
Chen, L.P.6
-
217
-
-
79952274296
-
An advanced lithium ion battery based on high performance electrode materials
-
Hassoun, J.; Lee, K.-S.; Sun, Y.-K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139–3143.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 3139-3143
-
-
Hassoun, J.1
Lee, K.-S.2
Sun, Y.-K.3
Scrosati, B.4
-
218
-
-
84885628423
-
A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators
-
Aravindan, V.; Sundaramurthy, J.; Kumar, P. S.; Shubha, N.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 2013, 5, 10636–10645.
-
(2013)
Nanoscale
, vol.5
, pp. 10636-10645
-
-
Aravindan, V.1
Sundaramurthy, J.2
Kumar, P.S.3
Shubha, N.4
Ling, W.C.5
Ramakrishna, S.6
Madhavi, S.7
|