메뉴 건너뛰기




Volumn 9, Issue 10, 2016, Pages 2823-2851

A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials

Author keywords

anode; coin cell; full cell; lithium ion batteries; nanostructure

Indexed keywords

ANODES; CELLS; CYTOLOGY; IONS; NANOSTRUCTURES;

EID: 84978056066     PISSN: 19980124     EISSN: 19980000     Source Type: Journal    
DOI: 10.1007/s12274-016-1171-1     Document Type: Review
Times cited : (211)

References (218)
  • 1
    • 84878263181 scopus 로고    scopus 로고
    • Evolution of strategies for modern rechargeable batteries
    • Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.
    • (2013) Acc. Chem. Res. , vol.46 , pp. 1053-1061
    • Goodenough, J.B.1
  • 3
    • 84902996046 scopus 로고    scopus 로고
    • Flexible solid-state supercapacitors: Design, fabrication and applications
    • Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2160-2181
    • Lu, X.H.1    Yu, M.H.2    Wang, G.M.3    Tong, Y.X.4    Li, Y.5
  • 4
    • 63749132596 scopus 로고    scopus 로고
    • Progress in electrical energy storage system: A critical review
    • Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312.
    • (2009) Prog. Nat. Sci. , vol.19 , pp. 291-312
    • Chen, H.S.1    Cong, T.N.2    Yang, W.3    Tan, C.Q.4    Li, Y.L.5    Ding, Y.L.6
  • 5
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
    • (2001) Nature , vol.414 , pp. 359-367
    • Tarascon, J.-M.1    Armand, M.2
  • 7
    • 38949102073 scopus 로고    scopus 로고
    • Building better batteries
    • Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
    • (2008) Nature , vol.451 , pp. 652-657
    • Armand, M.1    Tarascon, J.M.2
  • 8
    • 84868354566 scopus 로고    scopus 로고
    • Nanomaterials for renewable energy production and storage
    • Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 7909-7937
    • Chen, X.B.1    Li, C.2    Grätzel, M.3    Kostecki, R.4    Mao, S.S.5
  • 9
    • 33244474899 scopus 로고    scopus 로고
    • Electrodes with high power and high capacity for rechargeable lithium batteries
    • Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.
    • (2006) Science , vol.311 , pp. 977-980
    • Kang, K.1    Meng, Y.S.2    Bréger, J.3    Grey, C.P.4    Ceder, G.5
  • 10
    • 84916631543 scopus 로고    scopus 로고
    • Nanowire electrodes for electrochemical energy storage devices
    • Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.
    • (2014) Chem. Rev. , vol.114 , pp. 11828-11862
    • Mai, L.Q.1    Tian, X.C.2    Xu, X.3    Chang, L.4    Xu, L.5
  • 11
    • 84875683271 scopus 로고    scopus 로고
    • In situ fabrication of porous graphene electrodes for highperformance energy storage
    • Wang, Z.-L.; Xu, D.; Wang, H.-G.; Wu, Z.; Zhang, X.-B. In situ fabrication of porous graphene electrodes for highperformance energy storage. ACS Nano 2013, 7, 2422–2430.
    • (2013) ACS Nano , vol.7 , pp. 2422-2430
    • Wang, Z.-L.1    Xu, D.2    Wang, H.-G.3    Wu, Z.4    Zhang, X.-B.5
  • 14
    • 7544234502 scopus 로고    scopus 로고
    • What are batteries, fuel cells, and supercapacitors?
    • Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.
    • (2004) Chem. Rev. , vol.104 , pp. 4245-4270
    • Winter, M.1    Brodd, R.J.2
  • 16
    • 79961005781 scopus 로고    scopus 로고
    • Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
    • Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.
    • (2011) Energy Environ. Sci. , vol.4 , pp. 2682-2699
    • Ji, L.W.1    Lin, Z.2    Alcoutlabi, M.3    Zhang, X.W.4
  • 17
    • 84919936286 scopus 로고    scopus 로고
    • Recent advances in metal nitrides as highperformance electrode materials for energy storage devices
    • Balogun, M.-S.; Qiu, W. T.; Wang, W.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Recent advances in metal nitrides as highperformance electrode materials for energy storage devices. J. Mater. Chem. A 2015, 3, 1364–1387.
    • (2015) J. Mater. Chem. A , vol.3 , pp. 1364-1387
    • Balogun, M.-S.1    Qiu, W.T.2    Wang, W.3    Fang, P.P.4    Lu, X.H.5    Tong, Y.X.6
  • 21
    • 84863011248 scopus 로고    scopus 로고
    • Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage
    • Huang, Y.; Huang, X.-L.; Lian, J.-S.; Xu, D.; Wang, L.-M.; Zhang, X.-B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.
    • (2012) J. Mater. Chem. , vol.22 , pp. 2844-2847
    • Huang, Y.1    Huang, X.-L.2    Lian, J.-S.3    Xu, D.4    Wang, L.-M.5    Zhang, X.-B.6
  • 24
    • 84927767956 scopus 로고    scopus 로고
    • Li-ion battery materials: Present and future
    • Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.
    • (2015) Mater. Today , vol.18 , pp. 252-264
    • Nitta, N.1    Wu, F.X.2    Lee, J.T.3    Yushin, G.4
  • 25
    • 84864748139 scopus 로고    scopus 로고
    • Properties and promises of nanosized insertion materials for Li-ion batteries
    • Wagemaker, M.; Mulder, F. M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2013, 46, 1206–1215.
    • (2013) Acc. Chem. Res. , vol.46 , pp. 1206-1215
    • Wagemaker, M.1    Mulder, F.M.2
  • 26
    • 84922008616 scopus 로고    scopus 로고
    • Nanostructured anode materials for lithium ion batteries
    • Roy, P.; Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484.
    • (2015) J. Mater. Chem. A , vol.3 , pp. 2454-2484
    • Roy, P.1    Srivastava, S.K.2
  • 29
    • 84937022651 scopus 로고    scopus 로고
    • Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes
    • Aravindan, V.; Lee, Y.-S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.
    • (2015) Adv. Energy Mater. , vol.5 , pp. 1402225
    • Aravindan, V.1    Lee, Y.-S.2    Madhavi, S.3
  • 33
    • 84896910340 scopus 로고    scopus 로고
    • Progress in flexible lithium batteries and future prospects
    • Zhou, G. M.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1307-1338
    • Zhou, G.M.1    Li, F.2    Cheng, H.-M.3
  • 34
    • 84903182595 scopus 로고    scopus 로고
    • Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies
    • Hu, Y. H.; Sun, X. L. Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies. J. Mater. Chem. A 2014, 2, 10712–10738.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 10712-10738
    • Hu, Y.H.1    Sun, X.L.2
  • 35
    • 84903893188 scopus 로고    scopus 로고
    • Flexible solid-state electrochemical supercapacitors
    • Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290.
    • (2014) Nano Energy , vol.8 , pp. 274-290
    • Yang, P.H.1    Mai, W.J.2
  • 36
    • 84969601938 scopus 로고    scopus 로고
    • 2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries
    • 2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale 2016, 8, 8666–8672.
    • (2016) Nanoscale , vol.8 , pp. 8666-8672
    • Li, W.W.1    Gan, L.2    Guo, K.3    Ke, L.B.4    Wei, Y.Q.5    Li, H.Q.6    Shen, G.Z.7    Zhai, T.Y.8
  • 38
    • 84907553823 scopus 로고    scopus 로고
    • Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries
    • Balogun, M.-S.; Li, C.; Zeng, Y. X.; Yu, M. H.; Wu, Q. L.; Wu, M. M.; Lu, X. H.; Tong, Y. X. Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J. Power Sources 2014, 272, 946–953.
    • (2014) J. Power Sources , vol.272 , pp. 946-953
    • Balogun, M.-S.1    Li, C.2    Zeng, Y.X.3    Yu, M.H.4    Wu, Q.L.5    Wu, M.M.6    Lu, X.H.7    Tong, Y.X.8
  • 39
    • 84862302894 scopus 로고    scopus 로고
    • 4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries
    • 4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.
    • (2012) Nano Lett. , vol.12 , pp. 3005-3011
    • Liu, B.1    Zhang, J.2    Wang, X.F.3    Chen, G.4    Chen, D.5    Zhou, C.W.6    Shen, G.Z.7
  • 41
    • 84921457082 scopus 로고    scopus 로고
    • Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries
    • Zhu, J.; Chen, L. B.; Xu, Z.; Lu, B. G. Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 2015, 12, 339–346.
    • (2015) Nano Energy , vol.12 , pp. 339-346
    • Zhu, J.1    Chen, L.B.2    Xu, Z.3    Lu, B.G.4
  • 44
    • 84929457332 scopus 로고    scopus 로고
    • Composite of graphite/phosphorus as anode for lithium-ion batteries
    • Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.
    • (2015) J. Power Sources , vol.289 , pp. 100-104
    • Bai, A.J.1    Wang, L.2    Li, J.Y.3    He, X.M.4    Wang, J.X.5    Wang, J.L.6
  • 45
    • 84904597826 scopus 로고    scopus 로고
    • Flexible energy-storage devices: Design consideration and recent progress
    • Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.
    • (2014) Adv. Mater. , vol.26 , pp. 4763-4782
    • Wang, X.F.1    Lu, X.H.2    Liu, B.3    Chen, D.4    Tong, Y.X.5    Shen, G.Z.6
  • 47
    • 84906821052 scopus 로고    scopus 로고
    • Intercalation anode material for lithium ion battery based on molybdenum dioxide
    • Kumar Sen, U.; Shaligram, A.; Mitra, S. Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Appl. Mater. Interfaces 2014, 6, 14311–14319.
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 14311-14319
    • Kumar Sen, U.1    Shaligram, A.2    Mitra, S.3
  • 48
    • 84880048446 scopus 로고    scopus 로고
    • Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/ LiNi0.5Mn1.5O4 i d lithium ion battery
    • Xu, G.-L.; Xu, Y.-F.; Fang, J.-C.; Fu, F.; Sun, H.; Huang, L.; Yang, S. H.; Sun, S.-G. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/ LiNi0.5Mn1.5O4 i d lithium ion battery. ACS Appl. Mater. Interfaces 2013, 5, 6316–6323.
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 6316-6323
    • Xu, G.-L.1    Xu, Y.-F.2    Fang, J.-C.3    Fu, F.4    Sun, H.5    Huang, L.6    Yang, S.H.7    Sun, S.-G.8
  • 51
    • 79959964900 scopus 로고    scopus 로고
    • Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries
    • Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013–4023.
    • (2011) Carbon , vol.49 , pp. 4013-4023
    • Bulusheva, L.G.1    Okotrub, A.V.2    Kurenya, A.G.3    Zhang, H.K.4    Zhang, H.J.5    Chen, X.H.6    Song, H.H.7
  • 52
    • 0000654924 scopus 로고    scopus 로고
    • A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium
    • Débart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266–A1274.
    • (2001) J. Electrochem. Soc. , vol.148 , pp. A1266-A1274
    • Débart, A.1    Dupont, L.2    Poizot, P.3    Leriche, J.B.4    Tarascon, J.M.5
  • 54
    • 7644220712 scopus 로고    scopus 로고
    • Lithium batteries and cathode materials
    • Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.
    • (2004) Chem. Rev. , vol.104 , pp. 4271-4302
    • Whittingham, M.S.1
  • 55
    • 84906540695 scopus 로고    scopus 로고
    • 5/ conductive-polymer core/shell nanobelt array on threedimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries
    • 5/ conductive-polymer core/shell nanobelt array on threedimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794–5800.
    • (2014) Adv. Mater. , vol.26 , pp. 5794-5800
    • Chao, D.L.1    Xia, X.H.2    Liu, J.L.3    Fan, Z.X.4    Ng, C.F.5    Lin, J.Y.6    Zhang, H.7    Shen, Z.X.8    Fan, H.J.9
  • 56
    • 84877687451 scopus 로고    scopus 로고
    • Metal oxides and oxysalts as anode materials for Li ion batteries
    • Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.
    • (2013) Chem. Rev. , vol.113 , pp. 5364-5457
    • Reddy, M.V.1    Subba Rao, G.V.2    Chowdari, B.V.R.3
  • 57
    • 84946730768 scopus 로고    scopus 로고
    • Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries
    • Simões, M.; Surace, Y.; Yoon, S.; Battaglia, C.; Pokrant, S.; Weidenkaff, A. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries. J. Power Sources 2015, 291, 66–74.
    • (2015) J. Power Sources , vol.291 , pp. 66-74
    • Simões, M.1    Surace, Y.2    Yoon, S.3    Battaglia, C.4    Pokrant, S.5    Weidenkaff, A.6
  • 58
    • 84877741619 scopus 로고    scopus 로고
    • 2-based nanomaterials: synthesis and application in lithium-ion batteries
    • 2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.
    • (2013) Small , vol.9 , pp. 1877-1893
    • Chen, J.S.1    Lou, X.W.D.2
  • 59
    • 84877756741 scopus 로고    scopus 로고
    • Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage
    • Li, G.-R.; Xu, H.; Lu, X.-F.; Feng, J.-X.; Tong, Y.-X.; Su, C.-Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 2013, 5, 4056–4069.
    • (2013) Nanoscale , vol.5 , pp. 4056-4069
    • Li, G.-R.1    Xu, H.2    Lu, X.-F.3    Feng, J.-X.4    Tong, Y.-X.5    Su, C.-Y.6
  • 60
    • 84856492368 scopus 로고    scopus 로고
    • Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices
    • Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.
    • (2012) Prog. Mater. Sci. , vol.57 , pp. 724-803
    • Tiwari, J.N.1    Tiwari, R.N.2    Kim, K.S.3
  • 61
    • 78651521297 scopus 로고    scopus 로고
    • Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes
    • Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58.
    • (2011) Nanoscale , vol.3 , pp. 45-58
    • Jiang, J.1    Li, Y.Y.2    Liu, J.P.3    Huang, X.T.4
  • 62
    • 70350139845 scopus 로고    scopus 로고
    • Recent advances in rechargeable battery materials: A chemist's perspective
    • Palacín, M. R. Recent advances in rechargeable battery materials: A chemist's perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 2565-2575
    • Palacín, M.R.1
  • 63
    • 84896747908 scopus 로고    scopus 로고
    • 2 hybrid nanowire array for high-performance lithium ion full cells
    • 2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014, 4, 12950–12957.
    • (2014) RSC Adv. , vol.4 , pp. 12950-12957
    • Guo, J.L.1    Liu, J.P.2
  • 65
    • 84903122816 scopus 로고    scopus 로고
    • Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries
    • Balogun, M.-S.; Yu, M. H.; Li, C.; Zhai, T.; Liu, Y.; Lu, X. H.; Tong, Y. X. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 10825–10829.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 10825-10829
    • Balogun, M.-S.1    Yu, M.H.2    Li, C.3    Zhai, T.4    Liu, Y.5    Lu, X.H.6    Tong, Y.X.7
  • 66
    • 84937142566 scopus 로고    scopus 로고
    • Mater
    • Lu, X.-F.; Chen, X.-Y.; Zhou, W.; Tong, Y.-X.; Li, G.-R. a-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 14843–14850.
    • (2015) Interfaces , vol.7 , pp. 14843-14850
    • Lu, X.-F.1    Chen, X.-Y.2    Zhou, W.3    Tong, Y.-X.4
  • 67
    • 84875413255 scopus 로고    scopus 로고
    • The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
    • Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.
    • (2013) Nat. Chem. , vol.5 , pp. 263-275
    • Chhowalla, M.1    Shin, H.S.2    Eda, G.3    Li, L.-J.4    Loh, K.P.5    Zhang, H.6
  • 68
    • 84924854984 scopus 로고    scopus 로고
    • The role of graphene for electrochemical energy storage
    • Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.
    • (2015) Nat. Mater. , vol.14 , pp. 271-279
    • Raccichini, R.1    Varzi, A.2    Passerini, S.3    Scrosati, B.4
  • 69
    • 84938154106 scopus 로고    scopus 로고
    • Three dimensional architectures: Design, assembly and application in electrochemical capacitors
    • Yu, M. H.; Qiu, W. T.; Wang, F. X.; Zhai, T.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Three dimensional architectures: Design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 2015, 3, 15792–15823.
    • (2015) J. Mater. Chem. A , vol.3 , pp. 15792-15823
    • Yu, M.H.1    Qiu, W.T.2    Wang, F.X.3    Zhai, T.4    Fang, P.P.5    Lu, X.H.6    Tong, Y.X.7
  • 70
    • 84901923413 scopus 로고    scopus 로고
    • Three-dimensional self-supported metal oxides for advanced energy storage
    • Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.
    • (2014) Adv. Mater. , vol.26 , pp. 3368-3397
    • Ellis, B.L.1    Knauth, P.2    Djenizian, T.3
  • 71
    • 84901619446 scopus 로고    scopus 로고
    • A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode
    • Chae, C.; Noh, H. J.; Lee, J. K.; Scrosati, B.; Sun, Y. K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 2014, 24, 3036–3042.
    • (2014) Adv. Funct. Mater. , vol.24 , pp. 3036-3042
    • Chae, C.1    Noh, H.J.2    Lee, J.K.3    Scrosati, B.4    Sun, Y.K.5
  • 72
    • 84879862427 scopus 로고    scopus 로고
    • 3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries
    • 3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale 2013, 5, 6485–6490.
    • (2013) Nanoscale , vol.5 , pp. 6485-6490
    • Duan, W.C.1    Hu, Z.2    Zhang, K.3    Cheng, F.Y.4    Tao, Z.L.5    Chen, J.6
  • 76
    • 84893453577 scopus 로고    scopus 로고
    • Mixed transition-metal oxides: Design, synthesis, and energy-related applications
    • Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. D. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.
    • (2014) Angew. Chem., Int. Ed. , vol.53 , pp. 1488-1504
    • Yuan, C.Z.1    Wu, H.B.2    Xie, Y.3    Lou, X.W.D.4
  • 78
    • 84912095232 scopus 로고    scopus 로고
    • Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries
    • Balogun, M.-S.; Yu, M. H.; Huang, Y. C.; Li, C.; Fang, P. P.; Liu, Y.; Lu, X. H.; Tong, Y. X. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 2015, 11, 348–355.
    • (2015) Nano Energy , vol.11 , pp. 348-355
    • Balogun, M.-S.1    Yu, M.H.2    Huang, Y.C.3    Li, C.4    Fang, P.P.5    Liu, Y.6    Lu, X.H.7    Tong, Y.X.8
  • 79
    • 84976384041 scopus 로고    scopus 로고
    • Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrode for lithium ion batteries and supercapacitors
    • Balogun, M.-S.; Zeng, Y. X.; Qiu, W. T.; Luo, Y.; Onasanya, A.; Olaniyi, T.; Tong, Y. X. Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrode for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2016, 4, 9844–9849.
    • (2016) J. Mater. Chem. A , vol.4 , pp. 9844-9849
    • Balogun, M.-S.1    Zeng, Y.X.2    Qiu, W.T.3    Luo, Y.4    Onasanya, A.5    Olaniyi, T.6    Tong, Y.X.7
  • 80
    • 84923693944 scopus 로고    scopus 로고
    • 2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries
    • 2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem—Eur. J. 2015, 21, 4359–4367.
    • (2015) Chem—Eur. J. , vol.21 , pp. 4359-4367
    • Qiu, W.D.1    Jiao, J.Q.2    Xia, J.3    Zhong, H.M.4    Chen, L.P.5
  • 81
    • 84890516314 scopus 로고    scopus 로고
    • Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites
    • Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 209-231
    • Stephenson, T.1    Li, Z.2    Olsen, B.3    Mitlin, D.4
  • 82
    • 0027274122 scopus 로고
    • The rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte
    • Plichta, E. J.; Behl, W. K. The rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte. J. Electrochem. Soc. 1993, 140, 46–49.
    • (1993) J. Electrochem. Soc. , vol.140 , pp. 46-49
    • Plichta, E.J.1    Behl, W.K.2
  • 83
    • 84884902832 scopus 로고    scopus 로고
    • Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries
    • Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.
    • (2013) Adv. Mater. , vol.25 , pp. 4932-4937
    • Zhang, C.Z.1    Mahmood, N.2    Yin, H.3    Liu, F.4    Hou, Y.L.5
  • 84
    • 33750621819 scopus 로고    scopus 로고
    • + ion storage. Angew. Chem
    • + ion storage. Angew. Chem., Int. Ed. 2006, 45, 7039–7042.
    • (2006) Int. Ed. , vol.45 , pp. 7039-7042
    • Wang, Y.1    Lee, J.Y.2
  • 85
    • 67651111790 scopus 로고    scopus 로고
    • Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage
    • Wang, Y.; Wu, M. H.; Jiao, Z.; Lee, J. Y. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 2009, 21, 3210–3215.
    • (2009) Chem. Mater. , vol.21 , pp. 3210-3215
    • Wang, Y.1    Wu, M.H.2    Jiao, Z.3    Lee, J.Y.4
  • 86
    • 84978915519 scopus 로고    scopus 로고
    • Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for highperformance lithium-ion batteries., in press
    • Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for highperformance lithium-ion batteries. Adv. Mater., in press, DOI: 10.1002/adma.201503978.
    • Adv. Mater.
  • 87
    • 0020113612 scopus 로고
    • A reversible graphite-lithium negative electrode for electrochemical generators
    • Yazami, R.; Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371.
    • (1983) J. Power Sources , vol.9 , pp. 365-371
    • Yazami, R.1    Touzain, P.2
  • 88
    • 0037433632 scopus 로고    scopus 로고
    • Carbon anode materials for lithium ion batteries
    • Wu, Y. P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources 2003, 114, 228–236.
    • (2003) J. Power Sources , vol.114 , pp. 228-236
    • Wu, Y.P.1    Rahm, E.2    Holze, R.3
  • 89
    • 0032628838 scopus 로고    scopus 로고
    • Carbon materials for lithium-ion rechargeable batteries
    • Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.
    • (1999) Carbon , vol.37 , pp. 165-180
    • Flandrois, S.1    Simon, B.2
  • 91
    • 33847401833 scopus 로고    scopus 로고
    • Hard carbon/lithium composite anode materials for Li-ion batteries
    • Sun, H.; He, X. M.; Ren, J. G.; Li, J. J.; Jiang, C. Y.; Wan, C. R. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochim. Acta 2007, 52, 4312–4316.
    • (2007) Electrochim. Acta , vol.52 , pp. 4312-4316
    • Sun, H.1    He, X.M.2    Ren, J.G.3    Li, J.J.4    Jiang, C.Y.5    Wan, C.R.6
  • 93
    • 84954287950 scopus 로고    scopus 로고
    • An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode
    • Sun, Y. Z.; Ning, G. Q.; Qi, C. L.; Li, J. C.; Ma, X. L.; Xu, C. G.; Li, Y. F.; Zhang, X.; Gao, J. S. An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode. Electrochim. Acta 2016, 190, 141–149.
    • (2016) Electrochim. Acta , vol.190 , pp. 141-149
    • Sun, Y.Z.1    Ning, G.Q.2    Qi, C.L.3    Li, J.C.4    Ma, X.L.5    Xu, C.G.6    Li, Y.F.7    Zhang, X.8    Gao, J.S.9
  • 94
    • 0033184968 scopus 로고    scopus 로고
    • Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes
    • McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. D. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 1999, 81–82, 20–26.
    • (1999) J. Power Sources , vol.81-82 , pp. 20-26
    • McMillan, R.1    Slegr, H.2    Shu, Z.X.3    Wang, W.D.4
  • 95
    • 0033313765 scopus 로고    scopus 로고
    • On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
    • Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.
    • (1999) Electrochim. Acta , vol.45 , pp. 67-86
    • Aurbach, D.1    Markovsky, B.2    Weissman, I.3    Levi, E.4    Ein-Eli, Y.5
  • 96
    • 0027607781 scopus 로고
    • Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon
    • Dahn, J. R.; Sleigh, A. K.; Shi, H.; Reimers, J. N.; Zhong, Q.; Way, B. M. Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochim. Acta 1993, 38, 1179–1191.
    • (1993) Electrochim. Acta , vol.38 , pp. 1179-1191
    • Dahn, J.R.1    Sleigh, A.K.2    Shi, H.3    Reimers, J.N.4    Zhong, Q.5    Way, B.M.6
  • 97
    • 0031246515 scopus 로고    scopus 로고
    • Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries
    • Menachem, C.; Peled, E.; Burstein, L.; Rosenberg, Y. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J. Power Sources 1997, 68, 277–282.
    • (1997) J. Power Sources , vol.68 , pp. 277-282
    • Menachem, C.1    Peled, E.2    Burstein, L.3    Rosenberg, Y.4
  • 99
    • 84967289578 scopus 로고    scopus 로고
    • Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries
    • Hwang, G.; Kim, J.-M.; Hong, D.; Kim, C.-K.; Choi, N.-S.; Lee, S.-Y.; Park, S. Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. Green Chem. 2016, 18, 2710–2716.
    • (2016) Green Chem. , vol.18 , pp. 2710-2716
    • Hwang, G.1    Kim, J.-M.2    Hong, D.3    Kim, C.-K.4    Choi, N.-S.5    Lee, S.-Y.6    Park, S.7
  • 100
    • 0032315412 scopus 로고    scopus 로고
    • Characterization of lithiated natural graphite before and after mild oxidation
    • Menachem, C.; Wang, Y.; Flowers, J.; Peled, E.; Greenbaum, S. G. Characterization of lithiated natural graphite before and after mild oxidation. J. Power Sources 1998, 76, 180–185.
    • (1998) J. Power Sources , vol.76 , pp. 180-185
    • Menachem, C.1    Wang, Y.2    Flowers, J.3    Peled, E.4    Greenbaum, S.G.5
  • 101
    • 33847331205 scopus 로고    scopus 로고
    • Lithium-ion batteries based on carbon–silicon–graphite composite anodes
    • Khomenko, V. G.; Barsukov, V. Z.; Doninger, J. E.; Barsukov, I. V. Lithium-ion batteries based on carbon–silicon–graphite composite anodes. J. Power Sources 2007, 165, 598–608.
    • (2007) J. Power Sources , vol.165 , pp. 598-608
    • Khomenko, V.G.1    Barsukov, V.Z.2    Doninger, J.E.3    Barsukov, I.V.4
  • 103
    • 84927942479 scopus 로고    scopus 로고
    • Additive-free thick graphene film as an anode material for flexible lithium-ion batteries
    • Rana, K.; Kim, S. D.; Ahn, J.-H. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries. Nanoscale 2015, 7, 7065–7071.
    • (2015) Nanoscale , vol.7 , pp. 7065-7071
    • Rana, K.1    Kim, S.D.2    Ahn, J.-H.3
  • 104
    • 84929380202 scopus 로고    scopus 로고
    • An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg
    • Zhai, T.; Lu, X. H.; Wang, H. Y.; Wang, G. M.; Mathis, T.; Liu, T. Y.; Li, C.; Tong, Y. X.; Li, Y. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett. 2015, 15, 3189–3194.
    • (2015) Nano Lett. , vol.15 , pp. 3189-3194
    • Zhai, T.1    Lu, X.H.2    Wang, H.Y.3    Wang, G.M.4    Mathis, T.5    Liu, T.Y.6    Li, C.7    Tong, Y.X.8    Li, Y.9
  • 105
    • 77954936502 scopus 로고    scopus 로고
    • Graphene-based materials in electrochemistry
    • Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 3157-3180
    • Chen, D.1    Tang, L.H.2    Li, J.H.3
  • 106
    • 84924917744 scopus 로고    scopus 로고
    • Deficiencies of chemically reduced graphene as electrode in full Li-ion cells
    • Vargas, Ó.; Caballero, Á.; Morales, J. Deficiencies of chemically reduced graphene as electrode in full Li-ion cells. Electrochim. Acta 2015, 165, 365–371.
    • (2015) Electrochim. Acta , vol.165 , pp. 365-371
    • Vargas, Ó.1    Caballero, Á.2    Morales, J.3
  • 108
    • 84896385792 scopus 로고    scopus 로고
    • Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries
    • Vargas, Ó.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 3290–3298.
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 3290-3298
    • Vargas, Ó.1    Caballero, Á.2    Morales, J.3    Rodríguez-Castellón, E.4
  • 109
    • 84887899089 scopus 로고    scopus 로고
    • Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell
    • Vargas, Ó.; Caballero, Á.; Morales, J.; Elia, G. A.; Scrosati, B.; Hassoun, J. Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Phys. Chem. Chem. Phys. 2013, 15, 20444–20446.
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 20444-20446
    • Vargas, Ó.1    Caballero, Á.2    Morales, J.3    Elia, G.A.4    Scrosati, B.5    Hassoun, J.6
  • 110
    • 33846502688 scopus 로고    scopus 로고
    • Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries
    • Khomenko, V. G.; Barsukov, V. Z. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries. Electrochim. Acta 2007, 52, 2829–2840.
    • (2007) Electrochim. Acta , vol.52 , pp. 2829-2840
    • Khomenko, V.G.1    Barsukov, V.Z.2
  • 111
    • 77954908012 scopus 로고    scopus 로고
    • Li-alloy based anode materials for Li secondary batteries
    • Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 3115-3141
    • Park, C.-M.1    Kim, J.-H.2    Kim, H.3    Sohn, H.-J.4
  • 113
    • 84946201953 scopus 로고    scopus 로고
    • Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells
    • Huang, Y. L.; Hou, X. H.; Fan, X. Y.; Ma, S. M.; Hu, S. J.; Lam, K.-H. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 2015, 182, 1175–1187.
    • (2015) Electrochim. Acta , vol.182 , pp. 1175-1187
    • Huang, Y.L.1    Hou, X.H.2    Fan, X.Y.3    Ma, S.M.4    Hu, S.J.5    Lam, K.-H.6
  • 114
    • 84921534910 scopus 로고    scopus 로고
    • Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery
    • Eom, K.; Jung, J.; Lee, J. T.; Lair, V.; Joshi, T.; Lee, S. W.; Lin, Z. Q.; Fuller, T. F. Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 2015, 12, 314–321.
    • (2015) Nano Energy , vol.12 , pp. 314-321
    • Eom, K.1    Jung, J.2    Lee, J.T.3    Lair, V.4    Joshi, T.5    Lee, S.W.6    Lin, Z.Q.7    Fuller, T.F.8
  • 115
    • 84935850810 scopus 로고    scopus 로고
    • Tissue-like silicon nanowiresbased three-dimensional anodes for high-capacity lithium ion batteries
    • Peled, E.; Patolsky, F.; Golodnitsky, D.; Freedman, K.; Davidi, G.; Schneier, D. Tissue-like silicon nanowiresbased three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett. 2015, 15, 3907–3916.
    • (2015) Nano Lett. , vol.15 , pp. 3907-3916
    • Peled, E.1    Patolsky, F.2    Golodnitsky, D.3    Freedman, K.4    Davidi, G.5    Schneier, D.6
  • 117
    • 84920263223 scopus 로고    scopus 로고
    • Preparation and electrochemical evaluation of manganese ferrite spheres as anode materials for half and full lithium-ion batteries
    • Wang, G.; Wang, H.; Bai, J. T. Preparation and electrochemical evaluation of manganese ferrite spheres as anode materials for half and full lithium-ion batteries. J. Alloy. Compd. 2015, 627, 174–181.
    • (2015) J. Alloy. Compd. , vol.627 , pp. 174-181
    • Wang, G.1    Wang, H.2    Bai, J.T.3
  • 118
    • 84977839341 scopus 로고    scopus 로고
    • 2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries
    • 2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.
    • (2016) Adv. Mater. , vol.28 , pp. 4126-4133
    • Wang, N.1    Bai, Z.C.2    Qian, Y.T.3    Yang, J.4
  • 119
    • 84923404857 scopus 로고    scopus 로고
    • Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery
    • Li, X. W.; Yang, Z. B.; Fu, Y. J.; Qiao, L.; Li, D.; Yue, H. W.; He, D. Y. Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 2015, 9, 1858–1867.
    • (2015) ACS Nano , vol.9 , pp. 1858-1867
    • Li, X.W.1    Yang, Z.B.2    Fu, Y.J.3    Qiao, L.4    Li, D.5    Yue, H.W.6    He, D.Y.7
  • 121
    • 84959273217 scopus 로고    scopus 로고
    • Rusted iron wire waste into high performance anode (a-Fe2O3) for Li-ion batteries: An efficient waste management approach
    • Mhamane, D.; Kim, H.-K.; Aravindan, V.; Roh, K. C.; Srinivasan, M.; Kim, K.-B. Rusted iron wire waste into high performance anode (a-Fe2O3) for Li-ion batteries: An efficient waste management approach. Green Chem. 2016, 18, 1395–1404.
    • (2016) Green Chem. , vol.18 , pp. 1395-1404
    • Mhamane, D.1    Kim, H.-K.2    Aravindan, V.3    Roh, K.C.4    Srinivasan, M.5    Kim, K.-B.6
  • 122
    • 34548626482 scopus 로고    scopus 로고
    • Nanostructured Sn–C composite as an advanced anode material in high-performance Lithium-ion batteries
    • Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance Lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.
    • (2007) Adv. Mater. , vol.19 , pp. 2336-2340
    • Derrien, G.1    Hassoun, J.2    Panero, S.3    Scrosati, B.4
  • 124
    • 84908432712 scopus 로고    scopus 로고
    • Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof
    • Ni, W.; Cheng, J. L.; Shi, L. Y.; Li, X. D.; Wang, B.; Guan, Q.; Huang, L.; Gu, G. F.; Li, H. Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof. J. Mater. Chem. A 2014, 2, 19122–19130.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 19122-19130
    • Ni, W.1    Cheng, J.L.2    Shi, L.Y.3    Li, X.D.4    Wang, B.5    Guan, Q.6    Huang, L.7    Gu, G.F.8    Li, H.9
  • 125
    • 79952362065 scopus 로고    scopus 로고
    • Graphene-based nanomaterials for energy storage
    • Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.
    • (2011) Energy Environ. Sci. , vol.4 , pp. 668-674
    • Pumera, M.1
  • 126
    • 84906685819 scopus 로고    scopus 로고
    • Electrochemistry of graphene and related materials
    • Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188.
    • (2014) Chem. Rev. , vol.114 , pp. 7150-7188
    • Ambrosi, A.1    Chua, C.K.2    Bonanni, A.3    Pumera, M.4
  • 128
    • 84903941157 scopus 로고    scopus 로고
    • Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries
    • Sun, W.; Hu, R. Z.; Liu, H.; Zeng, M. Q.; Yang, L. C.; Wang, H. H.; Zhu, M. Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J. Power Sources 2014, 268, 610–618.
    • (2014) J. Power Sources , vol.268 , pp. 610-618
    • Sun, W.1    Hu, R.Z.2    Liu, H.3    Zeng, M.Q.4    Yang, L.C.5    Wang, H.H.6    Zhu, M.7
  • 129
    • 84887960146 scopus 로고    scopus 로고
    • The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode
    • Eom, K.; Joshi, T.; Bordes, A.; Do, I.; Fuller, T. F. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. J. Power Sources 2014, 249, 118–124.
    • (2014) J. Power Sources , vol.249 , pp. 118-124
    • Eom, K.1    Joshi, T.2    Bordes, A.3    Do, I.4    Fuller, T.F.5
  • 133
    • 84915814993 scopus 로고    scopus 로고
    • 2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties
    • 2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.
    • (2014) Angew. Chem., Int. Ed. , vol.53 , pp. 12590-12593
    • Zhang, G.Q.1    Wu, H.B.2    Song, T.3    Paik, U.4    Lou, X.W.5
  • 138
    • 84915770385 scopus 로고    scopus 로고
    • Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries
    • Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z. et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 126, 13706–13710.
    • (2014) Angew. Chem., Int. Ed. , vol.126 , pp. 13706-13710
    • Tang, Y.X.1    Zhang, Y.Y.2    Deng, J.Y.3    Qi, D.P.4    Leow, W.R.5    Wei, J.Q.6    Yin, S.Y.7    Dong, Z.L.8    Yazami, R.9    Chen, Z.10
  • 143
    • 84908181170 scopus 로고    scopus 로고
    • Titania–carbon nanocomposite anodes for lithium ion batteries—effects of confined growth and phase synergism
    • Petkovich, N. D.; Wilson, B. E.; Rudisill, S. G.; Stein, A. Titania–carbon nanocomposite anodes for lithium ion batteries—effects of confined growth and phase synergism. ACS Appl. Mater. Interfaces 2014, 6, 18215–18227.
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 18215-18227
    • Petkovich, N.D.1    Wilson, B.E.2    Rudisill, S.G.3    Stein, A.4
  • 146
    • 84908175966 scopus 로고    scopus 로고
    • 2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries
    • 2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J. Power Sources 2015, 273, 923–930.
    • (2015) J. Power Sources , vol.273 , pp. 923-930
    • Takami, N.1    Harada, Y.2    Iwasaki, T.3    Hoshina, K.4    Yoshida, Y.5
  • 147
    • 84871581822 scopus 로고    scopus 로고
    • 2/graphene nanostructured composite with high-rate performance for lithium ion batteries
    • 2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 2012, 6, 11035–11043.
    • (2012) ACS Nano , vol.6 , pp. 11035-11043
    • Xin, X.1    Zhou, X.F.2    Wu, J.H.3    Yao, X.Y.4    Liu, Z.P.5
  • 149
    • 84899863863 scopus 로고    scopus 로고
    • All-solid-state lithium-ion batteries based on self-supported titania nanotubes
    • Plylahan, N.; Letiche, M.; Barr, M. K. S.; Djenizian, T. All-solid-state lithium-ion batteries based on self-supported titania nanotubes. Electrochem. Commun. 2014, 43, 121–124.
    • (2014) Electrochem. Commun. , vol.43 , pp. 121-124
    • Plylahan, N.1    Letiche, M.2    Barr, M.K.S.3    Djenizian, T.4
  • 154
    • 85027932785 scopus 로고    scopus 로고
    • 3 core–shell nanowire array anode for high energy and power density lithium-ion batteries
    • 3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3524–3533.
    • (2015) Adv. Funct. Mater. , vol.25 , pp. 3524-3533
    • Wang, C.1    Wu, L.X.2    Wang, H.3    Zuo, W.H.4    Li, Y.Y.5    Liu, J.P.6
  • 159
    • 84860385499 scopus 로고    scopus 로고
    • Ti-based compounds as anode materials for Li-ion batteries
    • Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 6652-6667
    • Zhu, G.-N.1    Wang, Y.-G.2    Xia, Y.-Y.3
  • 165
    • 84883345179 scopus 로고    scopus 로고
    • High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications
    • Takami, N.; Inagaki, H.; Tatebayashi, Y.; Saruwatari, H.; Honda, K.; Egusa, S. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J. Power Sources 2013, 244, 469–475.
    • (2013) J. Power Sources , vol.244 , pp. 469-475
    • Takami, N.1    Inagaki, H.2    Tatebayashi, Y.3    Saruwatari, H.4    Honda, K.5    Egusa, S.6
  • 166
    • 84877146172 scopus 로고    scopus 로고
    • 5 cathodes with full cell application for lithium ion batteries
    • 5 cathodes with full cell application for lithium ion batteries. J. Electrochem. Soc. 2013, 160, A1016–A1024.
    • (2013) J. Electrochem. Soc. , vol.160 , pp. A1016-A1024
    • Cheah, Y.L.1    Aravindan, V.2    Madhavi, S.3
  • 169
    • 84906852463 scopus 로고    scopus 로고
    • 12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries
    • 12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. RSC Adv. 2014, 4, 38568–38574.
    • (2014) RSC Adv. , vol.4 , pp. 38568-38574
    • Du, G.D.1    Winton, B.R.2    Hashim, I.M.3    Sharma, N.4    Konstantinov, K.5    Reddy, M.V.6    Guo, Z.P.7
  • 174
    • 84905495071 scopus 로고    scopus 로고
    • 3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries
    • 3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries. RSC Adv. 2014, 4, 31672–31677.
    • (2014) RSC Adv. , vol.4 , pp. 31672-31677
    • Roh, H.-K.1    Kim, H.-K.2    Roh, K.C.3    Kim, K.-B.4
  • 177
    • 79955071407 scopus 로고    scopus 로고
    • New anode framework for rechargeable lithium batteries
    • Han, J.-T.; Huang, Y.-H.; Goodenough, J. B. New anode framework for rechargeable lithium batteries. Chem. Mater. 2011, 23, 2027–2029.
    • (2011) Chem. Mater. , vol.23 , pp. 2027-2029
    • Han, J.-T.1    Huang, Y.-H.2    Goodenough, J.B.3
  • 181
    • 84923253672 scopus 로고    scopus 로고
    • Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility
    • Xiong, P.; Peng, L. L.; Chen, D. H.; Zhao, Y.; Wang, X.; Yu, G. H. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 2015, 12, 816–823.
    • (2015) Nano Energy , vol.12 , pp. 816-823
    • Xiong, P.1    Peng, L.L.2    Chen, D.H.3    Zhao, Y.4    Wang, X.5    Yu, G.H.6
  • 182
    • 84911938003 scopus 로고    scopus 로고
    • Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective
    • Wang, Z. Y.; Liu, C.-J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015, 11, 277–293.
    • (2015) Nano Energy , vol.11 , pp. 277-293
    • Wang, Z.Y.1    Liu, C.-J.2
  • 189
    • 84878069053 scopus 로고    scopus 로고
    • Developing a light weight lithium ion battery—An effective material and electrode design for high performance conversion anodes
    • Hariharan, S.; Ramar, V.; Joshi, S. P.; Balaya, P. Developing a light weight lithium ion battery—An effective material and electrode design for high performance conversion anodes. RSC Adv. 2013, 3, 6386–6394.
    • (2013) RSC Adv. , vol.3 , pp. 6386-6394
    • Hariharan, S.1    Ramar, V.2    Joshi, S.P.3    Balaya, P.4
  • 196
    • 80755125655 scopus 로고    scopus 로고
    • MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
    • Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830.
    • (2011) Nano Lett. , vol.11 , pp. 4826-4830
    • Hwang, H.1    Kim, H.2    Cho, J.3
  • 197
    • 84910122909 scopus 로고    scopus 로고
    • Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism
    • Jian, Z. L.; Han, W. Z.; Liang, Y. L.; Lan, Y. C.; Fang, Z.; Hu, Y.-S.; Yao, Y. Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2014, 2, 20231–20236.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 20231-20236
    • Jian, Z.L.1    Han, W.Z.2    Liang, Y.L.3    Lan, Y.C.4    Fang, Z.5    Hu, Y.-S.6    Yao, Y.7
  • 198
    • 84893316328 scopus 로고    scopus 로고
    • Rhombohedral NASICONstructured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage
    • Zhang, Y.; Nie, P.; Shen, L. F.; Xu, G. Y.; Deng, H. F.; Luo, H. F.; Zhang, X. G. Rhombohedral NASICONstructured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Adv. 2014, 4, 8627–8631.
    • (2014) RSC Adv. , vol.4 , pp. 8627-8631
    • Zhang, Y.1    Nie, P.2    Shen, L.F.3    Xu, G.Y.4    Deng, H.F.5    Luo, H.F.6    Zhang, X.G.7
  • 199
    • 24944479025 scopus 로고    scopus 로고
    • Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries
    • Whittingham, M. S.; Song, Y. N.; Lutta, S.; Zavalij, P. Y.; Chernova, N. A. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 2005, 15, 3362–3379.
    • (2005) J. Mater. Chem. , vol.15 , pp. 3362-3379
    • Whittingham, M.S.1    Song, Y.N.2    Lutta, S.3    Zavalij, P.Y.4    Chernova, N.A.5
  • 200
    • 84948433380 scopus 로고    scopus 로고
    • 2/graphene composite on anode performance in lithium-ion batteries
    • 2/graphene composite on anode performance in lithium-ion batteries. J. Alloy. Compd. 2016, 660, 62–72.
    • (2016) J. Alloy. Compd. , vol.660 , pp. 62-72
    • Yuan, G.H.1    Wang, G.2    Wang, H.3    Bai, J.T.4
  • 203
    • 84956551418 scopus 로고    scopus 로고
    • Bimetallic coordination polymer as a promising anode material for lithium-ion batteries
    • Li, C.; Hu, X. S.; Lou, X. B.; Chen, Q.; Hu, B. W. Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem. Commun. 2016, 52, 2035–2038.
    • (2016) Chem. Commun. , vol.52 , pp. 2035-2038
    • Li, C.1    Hu, X.S.2    Lou, X.B.3    Chen, Q.4    Hu, B.W.5
  • 205
    • 0017930769 scopus 로고
    • 4 and other new Li+ superionic conductors
    • 4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117–124.
    • (1978) Mater. Res. Bull. , vol.13 , pp. 117-124
    • Hong, H.Y.P.1
  • 206
    • 84907783350 scopus 로고    scopus 로고
    • 3 as an anode—An outstanding negative electrode for high power energy storage devices
    • 3 as an anode—An outstanding negative electrode for high power energy storage devices. J. Mater. Chem. A 2014, 2, 17906–17913.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 17906-17913
    • Zhang, X.F.1    Kuhnel, R.-S.2    Schroeder, M.3    Balducci, A.4
  • 207
    • 84908012487 scopus 로고    scopus 로고
    • 3. 2014, 147, 498–505
    • 3. Electrochim. Acta 2014, 147, 498–505.
    • (2014) Electrochim. Acta
  • 208
    • 84908307004 scopus 로고    scopus 로고
    • In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwaveassisted chemical lithiation process
    • Moorhead-Rosenberg, Z.; Allcorn, E.; Manthiram, A. In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwaveassisted chemical lithiation process. Chem. Mater. 2014, 26, 5905–5913.
    • (2014) Chem. Mater. , vol.26 , pp. 5905-5913
    • Moorhead-Rosenberg, Z.1    Allcorn, E.2    Manthiram, A.3
  • 209
    • 0017019824 scopus 로고
    • Performance characteristics of solid lithium-aluminum alloy electrodes
    • Gay, E. C.; Vissers, D. R.; Martino, F. J.; Anderson, K. E. Performance characteristics of solid lithium-aluminum alloy electrodes. J. Electrochem. Soc. 1976, 123, 1591–1596.
    • (1976) J. Electrochem. Soc. , vol.123 , pp. 1591-1596
    • Gay, E.C.1    Vissers, D.R.2    Martino, F.J.3    Anderson, K.E.4
  • 210
    • 84939203693 scopus 로고    scopus 로고
    • High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity
    • Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6, 7872.
    • (2015) Nat. Commun. , vol.6 , pp. 7872
    • Li, S.1    Niu, J.J.2    Zhao, Y.C.3    So, K.P.4    Wang, C.5    Wang, C.A.6    Li, J.7
  • 212
    • 84925740284 scopus 로고    scopus 로고
    • Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage
    • Zhang, C. J.; Lin, Z.; Yang, Z. Z.; Xiao, D. D.; Hu, P.; Xu, H. X.; Duan, Y. L.; Pang, S. P.; Gu, L.; Cui, G. L. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage. Chem. Mater. 2015, 27, 2189–2194.
    • (2015) Chem. Mater. , vol.27 , pp. 2189-2194
    • Zhang, C.J.1    Lin, Z.2    Yang, Z.Z.3    Xiao, D.D.4    Hu, P.5    Xu, H.X.6    Duan, Y.L.7    Pang, S.P.8    Gu, L.9    Cui, G.L.10
  • 213
    • 84975090270 scopus 로고    scopus 로고
    • 2 nanofibers as new cathode for constructing 1. 6 V class “rocking-chair” type Li-ion cells. in press
    • 2 nanofibers as new cathode for constructing 1. 6 V class “rocking-chair” type Li-ion cells. Part. Part. Syst. Char., in press, DOI: 10.1002/ppsc.201600044.
    • Part. Part. Syst. Char.
  • 214
    • 84941140984 scopus 로고    scopus 로고
    • Carbon-encapsulated pyrite as stable and earthabundant high energy cathode material for rechargeable lithium batteries
    • Liu, J.; Wen, Y. R.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earthabundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025–6030.
    • (2014) Adv. Mater. , vol.26 , pp. 6025-6030
    • Liu, J.1    Wen, Y.R.2    Wang, Y.3    van Aken, P.A.4    Maier, J.5    Yu, Y.6
  • 216
    • 84903167483 scopus 로고    scopus 로고
    • L-cysteine-assisted synthesis of cubic pyrite/ nitrogen-doped graphene composite as anode material for lithium-ion batteries
    • Qiu, W. D.; Xia, J.; Zhong, H. M.; He, S. X.; Lai, S. H.; Chen, L. P. L-cysteine-assisted synthesis of cubic pyrite/ nitrogen-doped graphene composite as anode material for lithium-ion batteries. Electrochim. Acta 2014, 137, 197–205.
    • (2014) Electrochim. Acta , vol.137 , pp. 197-205
    • Qiu, W.D.1    Xia, J.2    Zhong, H.M.3    He, S.X.4    Lai, S.H.5    Chen, L.P.6
  • 217
    • 79952274296 scopus 로고    scopus 로고
    • An advanced lithium ion battery based on high performance electrode materials
    • Hassoun, J.; Lee, K.-S.; Sun, Y.-K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139–3143.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 3139-3143
    • Hassoun, J.1    Lee, K.-S.2    Sun, Y.-K.3    Scrosati, B.4
  • 218
    • 84885628423 scopus 로고    scopus 로고
    • A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators
    • Aravindan, V.; Sundaramurthy, J.; Kumar, P. S.; Shubha, N.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 2013, 5, 10636–10645.
    • (2013) Nanoscale , vol.5 , pp. 10636-10645
    • Aravindan, V.1    Sundaramurthy, J.2    Kumar, P.S.3    Shubha, N.4    Ling, W.C.5    Ramakrishna, S.6    Madhavi, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.