-
1
-
-
77950021498
-
High-performance lithium-ion anodes usinga hierarchical bottom-up approach
-
Magasinski, A. et al. High-Performance Lithium-Ion Anodes Usinga Hierarchical Bottom-Up Approach. Nat. Mater. 9, 353-358 (2010).
-
(2010)
Nat. Mater.
, vol.9
, pp. 353-358
-
-
Magasinski, A.1
-
2
-
-
77951694910
-
2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage
-
2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. J. Am. Chem. Soc. 132, 6124-6130 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 6124-6130
-
-
Chen, J.S.1
-
3
-
-
80053332289
-
2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries
-
2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano 5, 7100-7107 (2011).
-
(2011)
ACS Nano
, vol.5
, pp. 7100-7107
-
-
Sun, Y.M.1
-
4
-
-
79961013113
-
2 nanoarchitecture as a binder-free anode for lithium-ion batteries
-
2 Nanoarchitecture as a Binder-Free Anode for Lithium-Ion Batteries. Energy Environ. Sci. 4, 2870-2877 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2870-2877
-
-
Sun, Y.M.1
-
5
-
-
79959950738
-
2 nano-heterostructures with improved lithium-ion battery performance
-
2 Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Adv. Funct. Mater. 21, 2439-2445 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 2439-2445
-
-
Zhou, W.W.1
-
7
-
-
0035891138
-
Photoelectrochemical cells
-
DOI 10.1038/35104607
-
Gratzel, M. Photoelectrochemical Cells. Nature 414, 338-344 (2001). (Pubitemid 33097816)
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 338-344
-
-
Gratzel, M.1
-
8
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 47, 2930-2946 (2008).
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.M.3
-
9
-
-
18644377355
-
Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions
-
DOI 10.1021/ja044689+
-
Zhu, H. Y. et al. Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions. J. Am. Chem. Soc. 127, 6730-6736 (2005). (Pubitemid 40664180)
-
(2005)
Journal of the American Chemical Society
, vol.127
, Issue.18
, pp. 6730-6736
-
-
Zhu, H.Y.1
Lan, Y.2
Gao, X.P.3
Ringer, S.P.4
Zheng, Z.F.5
Song, D.Y.6
Zhao, J.C.7
-
10
-
-
76149093553
-
2 mesosponge layers for high-efficiency photocatalysis
-
2 Mesosponge Layers for High-Efficiency Photocatalysis. J. Am. Chem. Soc. 132, 1478-1479 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 1478-1479
-
-
Lee, K.1
-
11
-
-
79960279788
-
2 electrodes fabricated by dual templating methods for dye-sensitized solar cells
-
2 Electrodes Fabricated by Dual Templating Methods for Dye-Sensitized Solar Cells. Adv. Mater. 23, 2971-2975 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 2971-2975
-
-
Cho, C.Y.1
Moon, J.H.2
-
12
-
-
79951828697
-
Sandwich-like, stacked ultrathin titanate nanosheets for ultrafast lithium storage
-
Liu, J. H. et al. Sandwich-Like, Stacked Ultrathin Titanate Nanosheets for Ultrafast Lithium Storage. Adv. Mater. 23, 998-1002 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 998-1002
-
-
Liu, J.H.1
-
16
-
-
34547486889
-
Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications
-
DOI 10.1021/cr0500535
-
Chen, X. & Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 107, 2891-2959 (2007). (Pubitemid 47162903)
-
(2007)
Chemical Reviews
, vol.107
, Issue.7
, pp. 2891-2959
-
-
Chen, X.1
Mao, S.S.2
-
17
-
-
84857367020
-
2: A nanocomposite anode material for li-ion batteries
-
2: A Nanocomposite Anode Material for Li-Ion Batteries. Adv. Energy Mater. 1, 212-220 (2011).
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 212-220
-
-
Rahman, M.M.1
-
18
-
-
80052410557
-
2 and its application in lithium-ion storage
-
2 and Its Application in Lithium-Ion Storage. Adv. Funct. Mater. 21, 3231-3241 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 3231-3241
-
-
Myung, S.T.1
-
20
-
-
80055042372
-
2 hollow nanofibers as an anode material for high power lithium ion batteries
-
2 Hollow Nanofibers as an Anode Material for High Power Lithium Ion Batteries. Energy Environ. Sci. 4, 4532-4536 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4532-4536
-
-
Han, H.1
-
21
-
-
81855165930
-
2 hollow fibers
-
2 Hollow Fibers. J. Mater. Chem. 21, 15041-15048 (2011).
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 15041-15048
-
-
Yuan, T.1
-
22
-
-
30444453002
-
2 and carbon nanotubes as a high-rate li-intercalation electrode material
-
2 and Carbon Nanotubes as a High-Rate Li-Intercalation Electrode Material. Adv. Mater. 18, 69-73 (2006).
-
(2006)
Adv. Mater.
, vol.18
, pp. 69-73
-
-
Moriguchi, I.1
-
23
-
-
80051695209
-
Graphene-based titania nanosheets with high surface area for fast lithium storage
-
Yang, S. B., Feng, X. L. & Müllen, K. Sandwich-Like, Graphene-Based Titania Nanosheets with High Surface Area for Fast Lithium Storage. Adv. Mater. 23, 3575-3579 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 3575-3579
-
-
Yang, S.B.1
Feng, X.L.2
Sandwich-Like, M.K.3
-
24
-
-
79957612523
-
2 nanospheres/graphene composites by template-free self-assembly
-
2 Nanospheres/Graphene Composites by Template-Free Self-Assembly. Adv. Funct. Mater. 21, 1717-1722 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 1717-1722
-
-
Li, N.1
-
25
-
-
79151478307
-
2 nanofibers prepared via electrospinning for use in lithium-ion batteries
-
2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries. ACS Appl. Mater. Interface 2, 2046-2052 (2010).
-
(2010)
ACS Appl. Mater. Interface
, vol.2
, pp. 2046-2052
-
-
Nam, S.H.1
-
26
-
-
33847676237
-
2 nanotube anode material for lithium-ion battery
-
DOI 10.1016/j.elecom.2006.10.008, PII S1388248106004541
-
2 Nanotube Anode Material for Lithium-Ion Battery. Electrochem. Commun. 9, 425-430 (2007). (Pubitemid 46366827)
-
(2007)
Electrochemistry Communications
, vol.9
, Issue.3
, pp. 425-430
-
-
He, B.-L.1
Dong, B.2
Li, H.-L.3
-
27
-
-
34548300023
-
2 (Anatase) through efficient hierarchical mixed conducting networks
-
DOI 10.1002/adma.200602828
-
2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks. Adv. Mater. 19, 2087-2091 (2007). (Pubitemid 47338809)
-
(2007)
Advanced Materials
, vol.19
, Issue.16
, pp. 2087-2091
-
-
Guo, Y.-G.1
Hu, Y.-S.2
Sigle, W.3
Maier, J.4
-
28
-
-
80052256175
-
2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage
-
2/Titanium Nitride Nanotube Coaxial Arrays for High Performance Electrochemical Capacitive Energy Storage. Energy Environ. Sci. 4, 3502-3508 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3502-3508
-
-
Dong, S.1
-
29
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P. et al. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature 407, 496-499 (2000).
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
-
31
-
-
84861745352
-
Porous iron oxide ribbons grown on graphene for high-performance lithium storage
-
Yang, S. B. et al. Porous Iron Oxide Ribbons Grown on Graphene for High-Performance Lithium Storage. Sci. Rep. 2, 427 (2012).
-
(2012)
Sci. Rep.
, vol.2
, pp. 427
-
-
Yang, S.B.1
-
34
-
-
18744384998
-
4 nanomaterials in lithium-ion batteries and gas sensors
-
DOI 10.1002/adfm.200400429
-
4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Adv. Funct. Mater. 15, 851-857 (2005). (Pubitemid 40665858)
-
(2005)
Advanced Functional Materials
, vol.15
, Issue.5
, pp. 851-857
-
-
Li, W.-Y.1
Xu, L.-N.2
Chen, J.3
-
36
-
-
77957234443
-
General strategy for a large-scale fabric with branched nanofiber-nanorod hierarchical heterostructure: Controllable synthesis and applications
-
Shang, M. et al. General Strategy for a Large-Scale Fabric with Branched Nanofiber-Nanorod Hierarchical Heterostructure: Controllable Synthesis and Applications. Chem. Eur. J 16, 11412-11419 (2010).
-
(2010)
Chem. Eur. J
, vol.16
, pp. 11412-11419
-
-
Shang, M.1
-
37
-
-
79960105135
-
4 heterostructured nanowires with enhanced supercapacitor performance
-
4 Heterostructured Nanowires with Enhanced Supercapacitor Performance. Nat. Commun. 2, 318 (2011).
-
(2011)
Nat. Commun.
, vol.2
, pp. 318
-
-
Mai, L.Q.1
-
38
-
-
74049088693
-
4 directly on heterogeneous substrates
-
4 Directly on Heterogeneous Substrates. Cryst. Growth Des. 10, 70-75 (2010).
-
(2010)
Cryst. Growth Des.
, vol.10
, pp. 70-75
-
-
Jiang, J.1
-
40
-
-
75249093619
-
Direct synthesis of coo porous nanowire arrays on ti substrate and their application as lithium-ion battery electrodes
-
Jiang, J. et al. Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes. J. Phys. Chem. C 114, 929-932 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 929-932
-
-
Jiang, J.1
-
41
-
-
55049127676
-
2 hollow colloids and magnetic multifunctional particles
-
2 Hollow Colloids and Magnetic Multifunctional Particles. Adv. Mater. 20, 1853-1858 (2008).
-
(2008)
Adv. Mater.
, vol.20
, pp. 1853-1858
-
-
Lou, X.W.1
Archer, L.A.2
-
42
-
-
66949114271
-
2 three-dimensional nanonetwork based on peptide assembly
-
2 Three-Dimensional Nanonetwork Based on Peptide Assembly. ACS Nano 3, 1085-1090 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 1085-1090
-
-
Kim, S.W.1
-
43
-
-
78449304355
-
Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries
-
Mai, L. et al. Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries. Nano Lett. 10, 4750-4755 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 4750-4755
-
-
Mai, L.1
-
44
-
-
80052196861
-
2 nanofibers hierarchical heterostructures: Controlled fabrication and photocatalytic activity
-
2 Nanofibers Hierarchical Heterostructures: Controlled Fabrication and Photocatalytic Activity. New J. Chem. 35, 1795-1802 (2011).
-
(2011)
New J. Chem.
, vol.35
, pp. 1795-1802
-
-
Wang, H.G.1
|