메뉴 건너뛰기




Volumn 126, Issue , 2016, Pages 65-76

Total variation image restoration using hyper-Laplacian prior with overlapping group sparsity

Author keywords

Image restoration; Iterative optimization Alternating direction method of multiplier; Sparse prior; Total variation

Indexed keywords

IMAGE RECONSTRUCTION; LAPLACE TRANSFORMS; RESTORATION; STAIRS;

EID: 84977913816     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2015.11.022     Document Type: Article
Times cited : (58)

References (44)
  • 5
    • 49249099286 scopus 로고    scopus 로고
    • High-quality motion deblurring from a single image
    • Q. Shan, J. Jia, and A. Agrwala High-quality motion deblurring from a single image ACM Trans. Graph. 27 3 2008 73 83
    • (2008) ACM Trans. Graph. , vol.27 , Issue.3 , pp. 73-83
    • Shan, Q.1    Jia, J.2    Agrwala, A.3
  • 6
    • 77951295003 scopus 로고    scopus 로고
    • UPRE method for total variation parameter selection
    • Y. Lin, B. Wohlberg, and H. Guo UPRE method for total variation parameter selection Signal Process. 90 8 2010 2546 2551
    • (2010) Signal Process. , vol.90 , Issue.8 , pp. 2546-2551
    • Lin, Y.1    Wohlberg, B.2    Guo, H.3
  • 7
    • 84907103992 scopus 로고    scopus 로고
    • Box-constrained total-variation image restoration with automatic parameter estimation
    • C. He, C. Hu, W. Zhang, and B. Shi Box-constrained total-variation image restoration with automatic parameter estimation Acta Autom. Sin. 40 8 2014 1804 1811
    • (2014) Acta Autom. Sin. , vol.40 , Issue.8 , pp. 1804-1811
    • He, C.1    Hu, C.2    Zhang, W.3    Shi, B.4
  • 8
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and regularization method
    • A.N. Tikhonov Solution of incorrectly formulated problems and regularization method Sov. Math. Dokl. 4 1963 1035 1038
    • (1963) Sov. Math. Dokl. , vol.4 , pp. 1035-1038
    • Tikhonov, A.N.1
  • 9
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi Nonlinear total variation based noise removal algorithms Physics D 60 1992 259 268
    • (1992) Physics D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 10
    • 58049218859 scopus 로고    scopus 로고
    • Variational Bayesian blind deconvolution using a total variation prior
    • S.D. Babacan, R. Molina, and A.K. Katsaggelos Variational bayesian blind deconvolution using a total variation prior IEEE Trans. Image Process. 18 1 2009 12 26
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.1 , pp. 12-26
    • Babacan, S.D.1    Molina, R.2    Katsaggelos, A.K.3
  • 11
    • 57049132103 scopus 로고    scopus 로고
    • Nonlocal operators with applications to image processing
    • G. Gilboa, and S. Osher Nonlocal operators with applications to image processing Multiscale Model. Simul. 7 2008 1005 1028
    • (2008) Multiscale Model. Simul. , vol.7 , pp. 1005-1028
    • Gilboa, G.1    Osher, S.2
  • 12
    • 84875889605 scopus 로고    scopus 로고
    • Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers
    • R. Chan, M. Tao, and X.M. Yuan Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers SIAM J. Inf. Sci. 6 2013 680 697
    • (2013) SIAM J. Inf. Sci. , vol.6 , pp. 680-697
    • Chan, R.1    Tao, M.2    Yuan, X.M.3
  • 13
    • 84901189903 scopus 로고    scopus 로고
    • A nonmonotone adaptive projected gradient method for primal-dual total variation image restoration
    • G. Yu, W. Xue, and Y. Zhou A nonmonotone adaptive projected gradient method for primal-dual total variation image restoration Signal Process. 103 2014 242 249
    • (2014) Signal Process. , vol.103 , pp. 242-249
    • Yu, G.1    Xue, W.2    Zhou, Y.3
  • 14
    • 84901200066 scopus 로고    scopus 로고
    • Combining passion singular integral and total variation prior models in image restoration
    • R. Pablo, M.O. Hiram, and M. Javier Combining passion singular integral and total variation prior models in image restoration Signal Process. 103 2014 296 308
    • (2014) Signal Process. , vol.103 , pp. 296-308
    • Pablo, R.1    Hiram, M.O.2    Javier, M.3
  • 15
    • 84867850232 scopus 로고    scopus 로고
    • Robust and practical face recognition via structured sparsity
    • Springer Berlin Heidelberg
    • K. Jia, Tsung-Han Chan, and Yi Ma Robust and practical face recognition via structured sparsity Computer Vision-ECCV 2012. 2012 Springer Berlin Heidelberg 331 344
    • (2012) Computer Vision-ECCV 2012. , pp. 331-344
    • Jia, K.1    Chan, T.-H.2    Ma, Y.3
  • 16
    • 84871604261 scopus 로고    scopus 로고
    • Structured sparsity through convex optimization
    • F. Bach, R. Jenatton, J. Mairal, and G. Obozinski Structured sparsity through convex optimization Stat. Sci. 27 4 2012 450 468
    • (2012) Stat. Sci. , vol.27 , Issue.4 , pp. 450-468
    • Bach, F.1    Jenatton, R.2    Mairal, J.3    Obozinski, G.4
  • 17
    • 84961287812 scopus 로고    scopus 로고
    • Image restoration using total variation with overlapping group sparsity
    • J. Liu, T. Huang, I.W. Selesnick, X. Lv, and P. Chen Image restoration using total variation with overlapping group sparsity Inf. Sci. 295 2015 232 246
    • (2015) Inf. Sci. , vol.295 , pp. 232-246
    • Liu, J.1    Huang, T.2    Selesnick, I.W.3    Lv, X.4    Chen, P.5
  • 18
    • 0029291966 scopus 로고
    • Sparse approximation solutions to linear systems
    • B.K. Nararajan Sparse approximation solutions to linear systems Soc. Ind. Appl. Math. 24 2 1995 227 234
    • (1995) Soc. Ind. Appl. Math. , vol.24 , Issue.2 , pp. 227-234
    • Nararajan, B.K.1
  • 21
    • 32944474079 scopus 로고    scopus 로고
    • Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory
    • O.G. Guleryuz Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory IEEE Trans. Image Process. 15 3 2006 539 554
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.3 , pp. 539-554
    • Guleryuz, O.G.1
  • 22
    • 80052694528 scopus 로고    scopus 로고
    • SparseNet: Coordinate descent with nonconvex penalties
    • R. Mazumder, J.H. Friedman, and T. Hastie SparseNet: coordinate descent with nonconvex penalties J. Am. Stat. Assoc. 106 495 2011 1125 1138
    • (2011) J. Am. Stat. Assoc. , vol.106 , Issue.495 , pp. 1125-1138
    • Mazumder, R.1    Friedman, J.H.2    Hastie, T.3
  • 24
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
    • W. Dong, L. Zhang, G. Shi, and X. Xu Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization IEEE Trans. Image Process. 20 7 2011 1838 1857
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 1838-1857
    • Dong, W.1    Zhang, L.2    Shi, G.3    Xu, X.4
  • 25
    • 84883258839 scopus 로고    scopus 로고
    • Single image deblurring using novel image prior constraints
    • M. Shi, and T. Xu Single image deblurring using novel image prior constraints Opt. Int. J. Light. Electron Opt. 124 20 2013 4429 4434
    • (2013) Opt. Int. J. Light. Electron Opt. , vol.124 , Issue.20 , pp. 4429-4434
    • Shi, M.1    Xu, T.2
  • 27
    • 84891848870 scopus 로고    scopus 로고
    • Local probability distribution of natural signals in sparse domains
    • H. Rabbani, and G. Saeed Local probability distribution of natural signals in sparse domains Int. J. Adapt. Control. Signal Process. 28 1 2014 52 62
    • (2014) Int. J. Adapt. Control. Signal Process. , vol.28 , Issue.1 , pp. 52-62
    • Rabbani, H.1    Saeed, G.2
  • 28
    • 84903785600 scopus 로고    scopus 로고
    • Mixed noise removal by weighted encoding with sparse nonlocal regularization
    • J. Jiang, L. Zhang, and J. Yang Mixed noise removal by weighted encoding with sparse nonlocal regularization IEEE Trans. Image Process. 23 6 2014 2651 2662
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.6 , pp. 2651-2662
    • Jiang, J.1    Zhang, L.2    Yang, J.3
  • 29
    • 84878509079 scopus 로고    scopus 로고
    • Deconvolving images with unknown boundaries using the alternating direction method of multipliers
    • M.S. Almeida, and M. Figueiredo Deconvolving images with unknown boundaries using the alternating direction method of multipliers IEEE Trans. Image Process. 22 8 2013 3074 3086
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.8 , pp. 3074-3086
    • Almeida, M.S.1    Figueiredo, M.2
  • 30
    • 77949723995 scopus 로고    scopus 로고
    • A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data
    • J. Yang, Y. Zhang, and W. Yin. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data IEEE J. Sel. Top. Signal Process. 4 2 2010 288 297
    • (2010) IEEE J. Sel. Top. Signal Process. , vol.4 , Issue.2 , pp. 288-297
    • Yang, J.1    Zhang, Y.2    Yin, W.3
  • 31
    • 84875889605 scopus 로고    scopus 로고
    • Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers
    • R.H. Chan, M. Tao, and X. Yuan Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers SIAM J. Imaging Sci. 6 1 2013 680 697
    • (2013) SIAM J. Imaging Sci. , vol.6 , Issue.1 , pp. 680-697
    • Chan, R.H.1    Tao, M.2    Yuan, X.3
  • 32
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and et al. Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends Mach. Learn. 3 1 2011 1 122
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4
  • 33
    • 84889059741 scopus 로고    scopus 로고
    • Group sparse optimization by alternating direction method SPIE Optical Engineering+ Applications
    • 88580R-88580R-15
    • W. Deng, W. Yin, Y. Zhang. Group sparse optimization by alternating direction method, SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2013: 88580R-88580R-15.
    • (2013) International Society for Optics and Photonics
    • Deng, W.1    Yin, W.2    Zhang, Y.3
  • 34
    • 84951266986 scopus 로고    scopus 로고
    • On the global and linear convergence of the generalized alternating direction method of multipliers
    • W. Deng, and W. Yin On the global and linear convergence of the generalized alternating direction method of multipliers J. Sci. Comput. 65 1 2012 1 28
    • (2012) J. Sci. Comput. , vol.65 , Issue.1 , pp. 1-28
    • Deng, W.1    Yin, W.2
  • 35
    • 0032178315 scopus 로고    scopus 로고
    • Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities
    • B. He, and H. Yang Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities Oper. Res. Lett. 23 3 1998 151 161
    • (1998) Oper. Res. Lett. , vol.23 , Issue.3 , pp. 151-161
    • He, B.1    Yang, H.2
  • 36
    • 0014604308 scopus 로고
    • Multiplier and gradient methods
    • M.R. Hestenes Multiplier and gradient methods J. Optim. Theory Appl. 4 5 1969 303 320
    • (1969) J. Optim. Theory Appl. , vol.4 , Issue.5 , pp. 303-320
    • Hestenes, M.R.1
  • 37
    • 34249837486 scopus 로고
    • On the Douglas - Rachford splitting method and the proximal point algorithm for maximal monotone operators
    • J. Eckstein, and D.P. Bertsekas On the Douglas - Rachford splitting method and the proximal point algorithm for maximal monotone operators Math. Program. 55 1-3 1992 293 318
    • (1992) Math. Program. , vol.55 , Issue.1-3 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.P.2
  • 38
    • 81355160241 scopus 로고    scopus 로고
    • Kronecker product approximations for image restoration with whole-sample symmetric boundary conditions
    • X.G. Lv, T.Z. Huang, Z.B. Xu, and X.L. Zhao Kronecker product approximations for image restoration with whole-sample symmetric boundary conditions Inf. Sci. 186 1 2012 150 163
    • (2012) Inf. Sci. , vol.186 , Issue.1 , pp. 150-163
    • Lv, X.G.1    Huang, T.Z.2    Xu, Z.B.3    Zhao, X.L.4
  • 39
    • 36749072615 scopus 로고    scopus 로고
    • Majorization-minimization algorithms for wavelet-based image restoration
    • M. Figueiredo, J. Bioucas-Dias, and R. Nowak Majorization-minimization algorithms for wavelet-based image restoration IEEE Trans. Image Process. 16 12 2007 2980 2991
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.12 , pp. 2980-2991
    • Figueiredo, M.1    Bioucas-Dias, J.2    Nowak, R.3
  • 40
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • D.R. Hunter, and K. Lange A tutorial on MM algorithms Am. Stat. 58 1 2004 30 37
    • (2004) Am. Stat. , vol.58 , Issue.1 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 41
    • 84969334819 scopus 로고    scopus 로고
    • The split bregman method for L1-regularized problems
    • T. Goldstein, and S. Osher. The split bregman method for L1-regularized problems SIAM J. Imaging Sci. 2 2 2009 323 343
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 42
    • 0034298888 scopus 로고    scopus 로고
    • Fourth-order partial differential equations for noise removal
    • Y.L. You, and M. Kaveh Fourth-order partial differential equations for noise removal IEEE Trans. Image Process. 9 10 2000 1723 1730
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.10 , pp. 1723-1730
    • You, Y.L.1    Kaveh, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.