-
4
-
-
84864039510
-
Learning to rank with nonsmooth cost functions
-
C. Burges, R. Ragno and Q. Le. Learning to Rank with Nonsmooth Cost Functions. NIPS, 19:193-200, 2007.
-
(2007)
NIPS
, vol.19
, pp. 193-200
-
-
Burges, C.1
Ragno, R.2
Le, Q.3
-
5
-
-
31844446958
-
Learning to rank using gradient descent
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to Rank Using Gradient Descent. ICML, 89-96, 2005.
-
(2005)
ICML
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
7
-
-
84877756508
-
On the (Non-)existence of convex, Calibrated surrogate losses for ranking
-
C. Calauzenes, N. Usunier, P. Gallinari. On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking. NIPS, 197-205, 2012.
-
(2012)
NIPS
, pp. 197-205
-
-
Calauzenes, C.1
Usunier, N.2
Gallinari, P.3
-
8
-
-
34547987951
-
Learning to rank: From pairwise to listwise approach
-
Z. Cao, T. Qin, T. Liu, M. Tsai and H. Li. Learning to Rank: From Pairwise to Listwise Approach. ICML, 129-136, 2007.
-
(2007)
ICML
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.3
Tsai, M.4
Li, H.5
-
9
-
-
65449139973
-
Structured learning for non-smooth ranking losses
-
S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya. Structured Learning for Non-smooth Ranking Losses. KDD, 88-96, 2008.
-
(2008)
KDD
, pp. 88-96
-
-
Chakrabarti, S.1
Khanna, R.2
Sawant, U.3
Bhattacharyya, C.4
-
10
-
-
80053460837
-
Yahoo Learning to rank challenge overview
-
O. Chapelle and Y. Chang. Yahoo Learning to Rank Challenge Overview. JMLR-Proceedings Track, 14:1-24, 2011.
-
(2011)
JMLR-Proceedings Track
, vol.14
, pp. 1-24
-
-
Chapelle, O.1
Chang, Y.2
-
11
-
-
77953646359
-
Gradient descent optimization of smoothed information retrieval metrics
-
O. Chapelle and M. Wu. Gradient Descent Optimization of Smoothed Information Retrieval Metrics. Information Retrieval, 13(3):216-235, 2010.
-
(2010)
Information Retrieval
, vol.13
, Issue.3
, pp. 216-235
-
-
Chapelle, O.1
Wu, M.2
-
12
-
-
0033314011
-
Learning to order things
-
W. Cohen, R. Schapire, and Y. Singer. Learning to Order Things. JAIR, 10:243-270, 1999.
-
(1999)
JAIR
, vol.10
, pp. 243-270
-
-
Cohen, W.1
Schapire, R.2
Singer, Y.3
-
13
-
-
1942515261
-
Pranking with ranking
-
K. Crammer and Y. Singer. Pranking with Ranking. NIPS, 14:641-647, 2001.
-
(2001)
NIPS
, vol.14
, pp. 641-647
-
-
Crammer, K.1
Singer, Y.2
-
14
-
-
4644367942
-
An Efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. Schapire and Y. Singer. An Efficient Boosting Algorithm for Combining Preferences. JMLR, 4:933-969, 2003.
-
(2003)
JMLR
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.3
Singer, Y.4
-
15
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5):1189-1232, 2001.
-
(2001)
The Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.1
-
16
-
-
1942484979
-
Online Ranking/Collaborative filtering using the perceptron algorithm
-
E. Harrington. Online Ranking/Collaborative Filtering Using the Perceptron Algorithm. ICML Workshop then Conference, 20(1):250, 2003.
-
(2003)
ICML Workshop Then Conference
, vol.20
, Issue.1
, pp. 250
-
-
Harrington, E.1
-
17
-
-
0033322991
-
Support vector learning for ordinal regression
-
R. Herbrich, T. Graepel, and K. Obermayer. Support Vector Learning for Ordinal Regression. ICANN, 97-102, 1999.
-
(1999)
ICANN
, pp. 97-102
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
18
-
-
33750309008
-
Optimizing search engines using clickthrough data
-
T. Joachims. Optimizing Search Engines Using Clickthrough Data. KDD, 1:7-102, 2002.
-
(2002)
KDD
, vol.1
, pp. 7-102
-
-
Joachims, T.1
-
19
-
-
74549225126
-
Learning to rank from Bayesian decision inference
-
J. Kuo, P. Cheng, and H. Wang. Learning to Rank from Bayesian Decision Inference. CIKM, 827-836, 2009.
-
(2009)
CIKM
, pp. 827-836
-
-
Kuo, J.1
Cheng, P.2
Wang, H.3
-
22
-
-
80053244588
-
Direct loss minimization for structured prediction
-
D. McAllester, T. Hazan, and J. Keshet. Direct Loss Minimization for Structured Prediction. ICML, 23:1594-1602, 2010.
-
(2010)
ICML
, vol.23
, pp. 1594-1602
-
-
McAllester, D.1
Hazan, T.2
Keshet, J.3
-
23
-
-
34250221468
-
Linear feature-based models for information retrieval
-
D. Metzler and W. Croft. Linear Feature-Based Models for Information Retrieval. Information Retrieval, 10(3):257-274, 2007.
-
(2007)
Information Retrieval
, vol.10
, Issue.3
, pp. 257-274
-
-
Metzler, D.1
Croft, W.2
-
24
-
-
84944098666
-
Minimum error rate training in statistical machine translation
-
F. Och. Minimum Error Rate Training in Statistical Machine Translation. ACL, 311-318, 2003.
-
(2003)
ACL
, pp. 311-318
-
-
Och, F.1
-
25
-
-
0016443515
-
The analysis of permutations
-
R. Plackett. The Analysis of Permutations. Applied Statistics, 193-202, 1975.
-
(1975)
Applied Statistics
, pp. 193-202
-
-
Plackett, R.1
-
26
-
-
77955095012
-
A General Approximation framework for direct optimization of information retrieval measures
-
T. Qin, T. Liu, and H. Li. A General Approximation Framework for Direct Optimization of Information Retrieval Measures, Information Retrieval, 13(4):375-397, 2010.
-
(2010)
Information Retrieval
, vol.13
, Issue.4
, pp. 375-397
-
-
Qin, T.1
Liu, T.2
Li, H.3
-
27
-
-
77954568972
-
LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval
-
T. Qin, T. Liu, J. Xu, and H. Li. LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval. Information Retrieval, 13(4):346-374, 2010.
-
(2010)
Information Retrieval
, vol.13
, Issue.4
, pp. 346-374
-
-
Qin, T.1
Liu, T.2
Xu, J.3
Li, H.4
-
28
-
-
39649119873
-
Query-level loss functions for information retrieval
-
T. Qin, X. Zhang, M. Tsai, D. Wang, T. Liu, and H. Li. Query-level Loss Functions for Information Retrieval. Information Processing and Management, 44(2):838-855, 2008.
-
(2008)
Information Processing and Management
, vol.44
, Issue.2
, pp. 838-855
-
-
Qin, T.1
Zhang, X.2
Tsai, M.3
Wang, D.4
Liu, T.5
Li, H.6
-
29
-
-
84862271994
-
On NDCG Consistency of listwise ranking methods
-
P. Ravikumar, A. Tewari, and E. Yang. On NDCG Consistency of Listwise Ranking Methods. AISTATS, 618-626, 2011.
-
(2011)
AISTATS
, pp. 618-626
-
-
Ravikumar, P.1
Tewari, A.2
Yang, E.3
-
30
-
-
70450239631
-
The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List
-
C. Rudin. The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List. JMLR, 10:2233-2271, 2009.
-
(2009)
JMLR
, vol.10
, pp. 2233-2271
-
-
Rudin, C.1
-
32
-
-
84899011021
-
Ranking with large margin principle: Two approaches
-
A. Shashua and A. Levin. Ranking with Large Margin Principle: Two Approaches. NIPS, 937-944, 2003.
-
(2003)
NIPS
, pp. 937-944
-
-
Shashua, A.1
Levin, A.2
-
35
-
-
36448961557
-
Frank: A ranking method with fidelity loss
-
M. Tsai, T. Liu, Q. Tao, H. Chen and W. Ma. Frank: A Ranking Method with Fidelity Loss. SIGIR, 383-390, 2007.
-
(2007)
SIGIR
, pp. 383-390
-
-
Tsai, M.1
Liu, T.2
Tao, Q.3
Chen, H.4
Ma, W.5
-
36
-
-
84873421395
-
-
WWW
-
S. Tyree, K. Weinberger, K. Agrawal, and J. Paykin. Parallel Boosted Regression Trees for Web Search Ranking. WWW, 387-396, 2011.
-
(2011)
Parallel Boosted Regression Trees for Web Search Ranking
, pp. 387-396
-
-
Tyree, S.1
Weinberger, K.2
Agrawal, K.3
Paykin, J.4
-
37
-
-
80052413486
-
Learning to rank by optimizing NDCG Measure
-
H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to Rank by Optimizing NDCG Measure. NIPS, 1883-1891, 2009.
-
(2009)
NIPS
, pp. 1883-1891
-
-
Valizadegan, H.1
Jin, R.2
Zhang, R.3
Mao, J.4
-
39
-
-
56449094442
-
Listwise approach to learning to rank: Theory and algorithm
-
F. Xia, T. Liu, J. Wang, W. Zhang, and H. Li. Listwise Approach to Learning to Rank: Theory and Algorithm. ICML, 1192-1199, 2008.
-
(2008)
ICML
, pp. 1192-1199
-
-
Xia, F.1
Liu, T.2
Wang, J.3
Zhang, W.4
Li, H.5
-
40
-
-
57349175558
-
Directly optimizing evaluation measures in learning to rank
-
J. Xu, T. Liu, M. Lu, H. Li, and W. Ma. Directly Optimizing Evaluation Measures in Learning to Rank. SIGIR, 107-114, 2008.
-
(2008)
SIGIR
, pp. 107-114
-
-
Xu, J.1
Liu, T.2
Lu, M.3
Li, H.4
Ma, W.5
-
41
-
-
36448954244
-
Ada Rank: A boosting algorithm for information retrieval
-
J. Xu and H. Li. AdaRank: A Boosting Algorithm for Information Retrieval. SIGIR, 391-398, 2007.
-
(2007)
SIGIR
, pp. 391-398
-
-
Xu, J.1
Li, H.2
-
42
-
-
36448983903
-
A Support vector method for optimizing average precision
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A Support Vector Method for Optimizing Average Precision. SIGIR, 271-278, 2007.
-
(2007)
SIGIR
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
-
43
-
-
77953628309
-
Adapting Boosting for Information Retrieval Measures
-
Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting Boosting for Information Retrieval Measures. Information Retrieval, 13(3):254-270, 2010.
-
(2010)
Information Retrieval
, vol.13
, Issue.3
, pp. 254-270
-
-
Wu, Q.1
Burges, C.2
Svore, K.3
Gao, J.4
|