메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 856-864

Direct optimization of ranking measures for learning to rank models

Author keywords

Direct optimization; Learning to rank; Ranking measures; Supervised learning

Indexed keywords

APPROXIMATION ALGORITHMS; DATA MINING; ITERATIVE METHODS; LEARNING ALGORITHMS; OPTIMIZATION; QUERY PROCESSING; SUPERVISED LEARNING;

EID: 84977829397     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487630     Document Type: Conference Paper
Times cited : (19)

References (43)
  • 4
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • C. Burges, R. Ragno and Q. Le. Learning to Rank with Nonsmooth Cost Functions. NIPS, 19:193-200, 2007.
    • (2007) NIPS , vol.19 , pp. 193-200
    • Burges, C.1    Ragno, R.2    Le, Q.3
  • 7
    • 84877756508 scopus 로고    scopus 로고
    • On the (Non-)existence of convex, Calibrated surrogate losses for ranking
    • C. Calauzenes, N. Usunier, P. Gallinari. On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking. NIPS, 197-205, 2012.
    • (2012) NIPS , pp. 197-205
    • Calauzenes, C.1    Usunier, N.2    Gallinari, P.3
  • 8
    • 34547987951 scopus 로고    scopus 로고
    • Learning to rank: From pairwise to listwise approach
    • Z. Cao, T. Qin, T. Liu, M. Tsai and H. Li. Learning to Rank: From Pairwise to Listwise Approach. ICML, 129-136, 2007.
    • (2007) ICML , pp. 129-136
    • Cao, Z.1    Qin, T.2    Liu, T.3    Tsai, M.4    Li, H.5
  • 10
    • 80053460837 scopus 로고    scopus 로고
    • Yahoo Learning to rank challenge overview
    • O. Chapelle and Y. Chang. Yahoo Learning to Rank Challenge Overview. JMLR-Proceedings Track, 14:1-24, 2011.
    • (2011) JMLR-Proceedings Track , vol.14 , pp. 1-24
    • Chapelle, O.1    Chang, Y.2
  • 11
    • 77953646359 scopus 로고    scopus 로고
    • Gradient descent optimization of smoothed information retrieval metrics
    • O. Chapelle and M. Wu. Gradient Descent Optimization of Smoothed Information Retrieval Metrics. Information Retrieval, 13(3):216-235, 2010.
    • (2010) Information Retrieval , vol.13 , Issue.3 , pp. 216-235
    • Chapelle, O.1    Wu, M.2
  • 12
    • 0033314011 scopus 로고    scopus 로고
    • Learning to order things
    • W. Cohen, R. Schapire, and Y. Singer. Learning to Order Things. JAIR, 10:243-270, 1999.
    • (1999) JAIR , vol.10 , pp. 243-270
    • Cohen, W.1    Schapire, R.2    Singer, Y.3
  • 13
    • 1942515261 scopus 로고    scopus 로고
    • Pranking with ranking
    • K. Crammer and Y. Singer. Pranking with Ranking. NIPS, 14:641-647, 2001.
    • (2001) NIPS , vol.14 , pp. 641-647
    • Crammer, K.1    Singer, Y.2
  • 14
    • 4644367942 scopus 로고    scopus 로고
    • An Efficient boosting algorithm for combining preferences
    • Y. Freund, R. Iyer, R. Schapire and Y. Singer. An Efficient Boosting Algorithm for Combining Preferences. JMLR, 4:933-969, 2003.
    • (2003) JMLR , vol.4 , pp. 933-969
    • Freund, Y.1    Iyer, R.2    Schapire, R.3    Singer, Y.4
  • 15
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5):1189-1232, 2001.
    • (2001) The Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 16
    • 1942484979 scopus 로고    scopus 로고
    • Online Ranking/Collaborative filtering using the perceptron algorithm
    • E. Harrington. Online Ranking/Collaborative Filtering Using the Perceptron Algorithm. ICML Workshop then Conference, 20(1):250, 2003.
    • (2003) ICML Workshop Then Conference , vol.20 , Issue.1 , pp. 250
    • Harrington, E.1
  • 17
    • 0033322991 scopus 로고    scopus 로고
    • Support vector learning for ordinal regression
    • R. Herbrich, T. Graepel, and K. Obermayer. Support Vector Learning for Ordinal Regression. ICANN, 97-102, 1999.
    • (1999) ICANN , pp. 97-102
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 18
    • 33750309008 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing Search Engines Using Clickthrough Data. KDD, 1:7-102, 2002.
    • (2002) KDD , vol.1 , pp. 7-102
    • Joachims, T.1
  • 19
    • 74549225126 scopus 로고    scopus 로고
    • Learning to rank from Bayesian decision inference
    • J. Kuo, P. Cheng, and H. Wang. Learning to Rank from Bayesian Decision Inference. CIKM, 827-836, 2009.
    • (2009) CIKM , pp. 827-836
    • Kuo, J.1    Cheng, P.2    Wang, H.3
  • 22
    • 80053244588 scopus 로고    scopus 로고
    • Direct loss minimization for structured prediction
    • D. McAllester, T. Hazan, and J. Keshet. Direct Loss Minimization for Structured Prediction. ICML, 23:1594-1602, 2010.
    • (2010) ICML , vol.23 , pp. 1594-1602
    • McAllester, D.1    Hazan, T.2    Keshet, J.3
  • 23
    • 34250221468 scopus 로고    scopus 로고
    • Linear feature-based models for information retrieval
    • D. Metzler and W. Croft. Linear Feature-Based Models for Information Retrieval. Information Retrieval, 10(3):257-274, 2007.
    • (2007) Information Retrieval , vol.10 , Issue.3 , pp. 257-274
    • Metzler, D.1    Croft, W.2
  • 24
    • 84944098666 scopus 로고    scopus 로고
    • Minimum error rate training in statistical machine translation
    • F. Och. Minimum Error Rate Training in Statistical Machine Translation. ACL, 311-318, 2003.
    • (2003) ACL , pp. 311-318
    • Och, F.1
  • 25
    • 0016443515 scopus 로고
    • The analysis of permutations
    • R. Plackett. The Analysis of Permutations. Applied Statistics, 193-202, 1975.
    • (1975) Applied Statistics , pp. 193-202
    • Plackett, R.1
  • 26
    • 77955095012 scopus 로고    scopus 로고
    • A General Approximation framework for direct optimization of information retrieval measures
    • T. Qin, T. Liu, and H. Li. A General Approximation Framework for Direct Optimization of Information Retrieval Measures, Information Retrieval, 13(4):375-397, 2010.
    • (2010) Information Retrieval , vol.13 , Issue.4 , pp. 375-397
    • Qin, T.1    Liu, T.2    Li, H.3
  • 27
    • 77954568972 scopus 로고    scopus 로고
    • LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval
    • T. Qin, T. Liu, J. Xu, and H. Li. LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval. Information Retrieval, 13(4):346-374, 2010.
    • (2010) Information Retrieval , vol.13 , Issue.4 , pp. 346-374
    • Qin, T.1    Liu, T.2    Xu, J.3    Li, H.4
  • 29
    • 84862271994 scopus 로고    scopus 로고
    • On NDCG Consistency of listwise ranking methods
    • P. Ravikumar, A. Tewari, and E. Yang. On NDCG Consistency of Listwise Ranking Methods. AISTATS, 618-626, 2011.
    • (2011) AISTATS , pp. 618-626
    • Ravikumar, P.1    Tewari, A.2    Yang, E.3
  • 30
    • 70450239631 scopus 로고    scopus 로고
    • The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List
    • C. Rudin. The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List. JMLR, 10:2233-2271, 2009.
    • (2009) JMLR , vol.10 , pp. 2233-2271
    • Rudin, C.1
  • 32
    • 84899011021 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • A. Shashua and A. Levin. Ranking with Large Margin Principle: Two Approaches. NIPS, 937-944, 2003.
    • (2003) NIPS , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 34
    • 42549161120 scopus 로고    scopus 로고
    • Softrank: Optimizing non-smooth rank metrics
    • M. Taylor, J. Guiver, S. Robertson and T. Minka. Softrank: Optimizing Non-smooth Rank Metrics. WSDM, 77-86, 2008.
    • (2008) WSDM , pp. 77-86
    • Taylor, M.1    Guiver, J.2    Robertson, S.3    Minka, T.4
  • 35
    • 36448961557 scopus 로고    scopus 로고
    • Frank: A ranking method with fidelity loss
    • M. Tsai, T. Liu, Q. Tao, H. Chen and W. Ma. Frank: A Ranking Method with Fidelity Loss. SIGIR, 383-390, 2007.
    • (2007) SIGIR , pp. 383-390
    • Tsai, M.1    Liu, T.2    Tao, Q.3    Chen, H.4    Ma, W.5
  • 37
    • 80052413486 scopus 로고    scopus 로고
    • Learning to rank by optimizing NDCG Measure
    • H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to Rank by Optimizing NDCG Measure. NIPS, 1883-1891, 2009.
    • (2009) NIPS , pp. 1883-1891
    • Valizadegan, H.1    Jin, R.2    Zhang, R.3    Mao, J.4
  • 39
    • 56449094442 scopus 로고    scopus 로고
    • Listwise approach to learning to rank: Theory and algorithm
    • F. Xia, T. Liu, J. Wang, W. Zhang, and H. Li. Listwise Approach to Learning to Rank: Theory and Algorithm. ICML, 1192-1199, 2008.
    • (2008) ICML , pp. 1192-1199
    • Xia, F.1    Liu, T.2    Wang, J.3    Zhang, W.4    Li, H.5
  • 40
    • 57349175558 scopus 로고    scopus 로고
    • Directly optimizing evaluation measures in learning to rank
    • J. Xu, T. Liu, M. Lu, H. Li, and W. Ma. Directly Optimizing Evaluation Measures in Learning to Rank. SIGIR, 107-114, 2008.
    • (2008) SIGIR , pp. 107-114
    • Xu, J.1    Liu, T.2    Lu, M.3    Li, H.4    Ma, W.5
  • 41
    • 36448954244 scopus 로고    scopus 로고
    • Ada Rank: A boosting algorithm for information retrieval
    • J. Xu and H. Li. AdaRank: A Boosting Algorithm for Information Retrieval. SIGIR, 391-398, 2007.
    • (2007) SIGIR , pp. 391-398
    • Xu, J.1    Li, H.2
  • 42
    • 36448983903 scopus 로고    scopus 로고
    • A Support vector method for optimizing average precision
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A Support Vector Method for Optimizing Average Precision. SIGIR, 271-278, 2007.
    • (2007) SIGIR , pp. 271-278
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4
  • 43
    • 77953628309 scopus 로고    scopus 로고
    • Adapting Boosting for Information Retrieval Measures
    • Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting Boosting for Information Retrieval Measures. Information Retrieval, 13(3):254-270, 2010.
    • (2010) Information Retrieval , vol.13 , Issue.3 , pp. 254-270
    • Wu, Q.1    Burges, C.2    Svore, K.3    Gao, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.