-
2
-
-
84858279484
-
Nanoscale zero-valent iron: future prospects for an emerging water treatment technology
-
[2] Crane, R.A., Scott, T.B., Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 211–212 (2012), 112–125.
-
(2012)
J. Hazard. Mater.
, vol.211-212
, pp. 112-125
-
-
Crane, R.A.1
Scott, T.B.2
-
3
-
-
84863198462
-
Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers
-
[3] Huang, Y., Ma, H., Wang, S., Shen, M., Guo, R., Cao, X., Zhu, M., Shi, X., Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl. Mater. Interfaces 4 (2012), 3054–3061.
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 3054-3061
-
-
Huang, Y.1
Ma, H.2
Wang, S.3
Shen, M.4
Guo, R.5
Cao, X.6
Zhu, M.7
Shi, X.8
-
4
-
-
84863551304
-
Top 10 plant pathogenic bacteria in molecular plant pathology
-
[4] Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S.V., Machado, M.A., Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13 (2012), 614–629.
-
(2012)
Mol. Plant Pathol.
, vol.13
, pp. 614-629
-
-
Mansfield, J.1
Genin, S.2
Magori, S.3
Citovsky, V.4
Sriariyanum, M.5
Ronald, P.6
Dow, M.7
Verdier, V.8
Beer, S.V.9
Machado, M.A.10
-
5
-
-
84918839976
-
Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide
-
[5] Turcheniuk, K., Hage, C.-H., Spadavecchia, J., Serrano, A.Y., Larroulet, I., Pesquera, A., Zurutuza, A., Pisfil, M.G., Héliot, L., Boukaert, J., Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. J. Mater. Chem. B 3 (2015), 375–386.
-
(2015)
J. Mater. Chem. B
, vol.3
, pp. 375-386
-
-
Turcheniuk, K.1
Hage, C.-H.2
Spadavecchia, J.3
Serrano, A.Y.4
Larroulet, I.5
Pesquera, A.6
Zurutuza, A.7
Pisfil, M.G.8
Héliot, L.9
Boukaert, J.10
-
6
-
-
84884676423
-
From in vitro to in vivo models of bacterial biofilm-related infections
-
[6] Lebeaux, D., Chauhan, A., Rendueles, O., Beloin, C., From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2 (2013), 288–356.
-
(2013)
Pathogens
, vol.2
, pp. 288-356
-
-
Lebeaux, D.1
Chauhan, A.2
Rendueles, O.3
Beloin, C.4
-
7
-
-
84884380507
-
Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets
-
[7] de Faria, A.F., Martinez, D.S.T., Meira, S.M.M., de Moraes, A.C.M., Brandelli, A., Souza Filho, A.G., Alves, O.L., Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B 113 (2014), 115–124.
-
(2014)
Colloids Surf. B
, vol.113
, pp. 115-124
-
-
de Faria, A.F.1
Martinez, D.S.T.2
Meira, S.M.M.3
de Moraes, A.C.M.4
Brandelli, A.5
Souza Filho, A.G.6
Alves, O.L.7
-
8
-
-
2442686414
-
Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria
-
[8] Sondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloids Interf. Sci. 275 (2004), 177–182.
-
(2004)
J. Colloids Interf. Sci.
, vol.275
, pp. 177-182
-
-
Sondi, I.1
Salopek-Sondi, B.2
-
9
-
-
84902173212
-
Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity
-
[9] Lee, S.J., Heo, D.N., Moon, J.-H., Ko, W.-K., Lee, J.B., Bae, M.S., Park, S.W., Kim, J.E., Lee, D.H., Kim, E.-C., Lee, C.H., Kwon, I.K., Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr. Polym. 111 (2014), 530–537.
-
(2014)
Carbohydr. Polym.
, vol.111
, pp. 530-537
-
-
Lee, S.J.1
Heo, D.N.2
Moon, J.-H.3
Ko, W.-K.4
Lee, J.B.5
Bae, M.S.6
Park, S.W.7
Kim, J.E.8
Lee, D.H.9
Kim, E.-C.10
Lee, C.H.11
Kwon, I.K.12
-
10
-
-
84868109747
-
The ubiquity of iron
-
[10] Frey, P.A., Reed, G.H., The ubiquity of iron. ACS Chem. Biol. 7 (2012), 1477–1481.
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 1477-1481
-
-
Frey, P.A.1
Reed, G.H.2
-
11
-
-
74449087115
-
Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead
-
[11] Kim, H., Hong, H.-J., Jung, J., Kim, S.-H., Yang, J.-W., Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 176 (2010), 1038–1043.
-
(2010)
J. Hazard. Mater.
, vol.176
, pp. 1038-1043
-
-
Kim, H.1
Hong, H.-J.2
Jung, J.3
Kim, S.-H.4
Yang, J.-W.5
-
12
-
-
84917706533
-
Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system
-
[12] Li, R., Jin, X., Megharaj, M., Naidu, R., Chen, Z., Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem. Eng. J. 264 (2015), 587–594.
-
(2015)
Chem. Eng. J.
, vol.264
, pp. 587-594
-
-
Li, R.1
Jin, X.2
Megharaj, M.3
Naidu, R.4
Chen, Z.5
-
14
-
-
70649103949
-
Use of zero-valent iron nanoparticles in inactivating microbes
-
[14] Diao, M., Yao, M., Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 43 (2009), 5243–5251.
-
(2009)
Water Res.
, vol.43
, pp. 5243-5251
-
-
Diao, M.1
Yao, M.2
-
15
-
-
84863276333
-
Inactivation and magnetic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: observations and mechanisms
-
[15] Chen, Q., Gao, M., Li, J., Shen, F., Wu, Y., Xu, Z., Yao, M., Inactivation and magnetic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: observations and mechanisms. Environ. Sci. Technol. 46 (2012), 2360–2367.
-
(2012)
Environ. Sci. Technol.
, vol.46
, pp. 2360-2367
-
-
Chen, Q.1
Gao, M.2
Li, J.3
Shen, F.4
Wu, Y.5
Xu, Z.6
Yao, M.7
-
16
-
-
77951785021
-
Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli
-
[16] Li, Z., Greden, K., Alvarez, P.J.J., Gregory, K.B., Lowry, G.V., Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ. Sci. Technol. 44 (2010), 3462–3467.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 3462-3467
-
-
Li, Z.1
Greden, K.2
Alvarez, P.J.J.3
Gregory, K.B.4
Lowry, G.V.5
-
17
-
-
46849119380
-
Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli
-
[17] Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J., Sedlak, D.L., Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 42 (2008), 4927–4933.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 4927-4933
-
-
Lee, C.1
Kim, J.Y.2
Lee, W.I.3
Nelson, K.L.4
Yoon, J.5
Sedlak, D.L.6
-
18
-
-
78651280034
-
One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles
-
[18] Carroll, K.J., Hudgins, D.M., Spurgeon, S., Kemner, K.M., Mishra, B., Boyanov, M.I., Brown, L.W. III, Taheri, M.L., Carpenter, E.E., One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles. Chem. Mater. 22 (2010), 6291–6296.
-
(2010)
Chem. Mater.
, vol.22
, pp. 6291-6296
-
-
Carroll, K.J.1
Hudgins, D.M.2
Spurgeon, S.3
Kemner, K.M.4
Mishra, B.5
Boyanov, M.I.6
Brown, L.W.7
Taheri, M.L.8
Carpenter, E.E.9
-
19
-
-
84898944607
-
+-NOM-Iron(II, III) systems and antibacterial activity studies
-
+-NOM-Iron(II, III) systems and antibacterial activity studies. Environ. Sci. Technol. 48 (2014), 3228–3235.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 3228-3235
-
-
Adegboyega, N.F.1
Sharma, V.K.2
Siskova, K.M.3
Vecerova, R.4
Kolar, M.5
Zbořil, R.6
Gardea-Torresdey, J.L.7
-
20
-
-
84900470847
-
Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity
-
[20] Anthony, K.J.P., Murugan, M., Gurunathan, S., Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity. J. Ind. Eng. Chem. 20 (2014), 1505–1510.
-
(2014)
J. Ind. Eng. Chem.
, vol.20
, pp. 1505-1510
-
-
Anthony, K.J.P.1
Murugan, M.2
Gurunathan, S.3
-
21
-
-
84906755986
-
Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration
-
[21] Ko, Y.-S., Joe, Y.H., Seo, M., Lim, K., Hwang, J., Woo, K., Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. J. Mater. Chem. B 2 (2014), 6714–6722.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 6714-6722
-
-
Ko, Y.-S.1
Joe, Y.H.2
Seo, M.3
Lim, K.4
Hwang, J.5
Woo, K.6
-
22
-
-
84864655437
-
Negligible particle-specific antibacterial activity of silver nanoparticles
-
[22] Xiu, Z.-m., Zhang, Q.-b., Puppala, H.L., Colvin, V.L., Alvarez, P.J.J., Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12 (2012), 4271–4275.
-
(2012)
Nano Lett.
, vol.12
, pp. 4271-4275
-
-
Xiu, Z.-M.1
Zhang, Q.-B.2
Puppala, H.L.3
Colvin, V.L.4
Alvarez, P.J.J.5
-
23
-
-
84878226119
-
Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal
-
[23] Marková, Z., n. Šišková, K.M., Filip, J., Čuda, J., Kolář, M., r. Šafářová, K., Medřík, I., Zbořil, R., Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ. Sci. Technol. 47 (2013), 5285–5293.
-
(2013)
Environ. Sci. Technol.
, vol.47
, pp. 5285-5293
-
-
Marková, Z.1
n. Šišková, K.M.2
Filip, J.3
Čuda, J.4
Kolář, M.5
r. Šafářová, K.6
Medřík, I.7
Zbořil, R.8
-
24
-
-
84867304039
-
A roadmap for graphene
-
[24] Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K., A roadmap for graphene. Nature 490 (2012), 192–200.
-
(2012)
Nature
, vol.490
, pp. 192-200
-
-
Novoselov, K.S.1
Falko, V.I.2
Colombo, L.3
Gellert, P.R.4
Schwab, M.G.5
Kim, K.6
-
25
-
-
84984918774
-
4 nano-composite switching the negative influence of humic acid coating into an enhancing effect in the removal of arsenic from water
-
4 nano-composite switching the negative influence of humic acid coating into an enhancing effect in the removal of arsenic from water. Environ. Sci.: Water Res. Technol. 1 (2015), 77–83.
-
(2015)
Environ. Sci.: Water Res. Technol.
, vol.1
, pp. 77-83
-
-
Paul, B.1
Parashar, V.2
Mishra, A.3
-
26
-
-
84903650343
-
Cu-Ni nanoparticle-decorated graphene based photodetector
-
[26] Kumar, A., Husale, S., Srivastava, A.K., Dutta, P.K., Dhar, A., Cu-Ni nanoparticle-decorated graphene based photodetector. Nanoscale 6 (2014), 8192–8198.
-
(2014)
Nanoscale
, vol.6
, pp. 8192-8198
-
-
Kumar, A.1
Husale, S.2
Srivastava, A.K.3
Dutta, P.K.4
Dhar, A.5
-
27
-
-
80052555212
-
Enhanced Cr(vi) removal using iron nanoparticle decorated graphene
-
[27] Jabeen, H., Chandra, V., Jung, S., Lee, J.W., Kim, K.S., Kim, S.B., Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale 3 (2011), 3583–3585.
-
(2011)
Nanoscale
, vol.3
, pp. 3583-3585
-
-
Jabeen, H.1
Chandra, V.2
Jung, S.3
Lee, J.W.4
Kim, K.S.5
Kim, S.B.6
-
28
-
-
71149087169
-
2 thin film for photoinactivation of bacteria in solar light irradiation
-
2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 113 (2009), 20214–20220.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 20214-20220
-
-
Akhavan, O.1
Ghaderi, E.2
-
29
-
-
84902438459
-
Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent
-
[29] Tian, T., Shi, X., Cheng, L., Luo, Y., Dong, Z., Gong, H., Xu, L., Zhong, Z., Peng, R., Liu, Z., Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl. Mater. Interfaces 6 (2014), 8542–8548.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 8542-8548
-
-
Tian, T.1
Shi, X.2
Cheng, L.3
Luo, Y.4
Dong, Z.5
Gong, H.6
Xu, L.7
Zhong, Z.8
Peng, R.9
Liu, Z.10
-
30
-
-
80053318851
-
Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress
-
[30] Liu, S., Zeng, T.H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., Chen, Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5 (2011), 6971–6980.
-
(2011)
ACS Nano
, vol.5
, pp. 6971-6980
-
-
Liu, S.1
Zeng, T.H.2
Hofmann, M.3
Burcombe, E.4
Wei, J.5
Jiang, R.6
Kong, J.7
Chen, Y.8
-
31
-
-
77955522923
-
Graphene-based antibacterial paper
-
[31] Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., Fan, C., Graphene-based antibacterial paper. ACS Nano 4 (2010), 4317–4323.
-
(2010)
ACS Nano
, vol.4
, pp. 4317-4323
-
-
Hu, W.1
Peng, C.2
Luo, W.3
Lv, M.4
Li, X.5
Li, D.6
Huang, Q.7
Fan, C.8
-
33
-
-
84855823812
-
2–graphene nanocomposites for photocatalytic hydrogen production from splitting water
-
2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int. J. Hydrogen Energy 37 (2012), 2224–2230.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 2224-2230
-
-
Cheng, P.1
Yang, Z.2
Wang, H.3
Cheng, W.4
Chen, M.5
Shangguan, W.6
Ding, G.7
-
34
-
-
84913546674
-
Reductive and oxidative degradation of iopamidol iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment
-
[34] Zhao, C., Arroyo-Mora, L.E., DeCaprio, A.P., Sharma, V.K., Dionysiou, D.D., O'Shea, K.E., Reductive and oxidative degradation of iopamidol iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment. Water Res. 67 (2014), 144–153.
-
(2014)
Water Res.
, vol.67
, pp. 144-153
-
-
Zhao, C.1
Arroyo-Mora, L.E.2
DeCaprio, A.P.3
Sharma, V.K.4
Dionysiou, D.D.5
O'Shea, K.E.6
-
35
-
-
84871082052
-
Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants
-
[35] Yang, X., Chen, C., Li, J., Zhao, G., Ren, X., Wang, X., Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2 (2012), 8821–8826.
-
(2012)
RSC Adv.
, vol.2
, pp. 8821-8826
-
-
Yang, X.1
Chen, C.2
Li, J.3
Zhao, G.4
Ren, X.5
Wang, X.6
-
36
-
-
83655167421
-
Preparation and capacitance performance of Ag–graphene based nanocomposite
-
[36] Zheng, L., Zhang, G., Zhang, M., Guo, S., Liu, Z.H., Preparation and capacitance performance of Ag–graphene based nanocomposite. J. Power Sources 201 (2012), 376–381.
-
(2012)
J. Power Sources
, vol.201
, pp. 376-381
-
-
Zheng, L.1
Zhang, G.2
Zhang, M.3
Guo, S.4
Liu, Z.H.5
-
37
-
-
84878686643
-
One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium
-
[37] Ren, F., Wang, C., Zhai, C., Jiang, F., Yue, R., Du, Y., Yang, P., Xu, J., One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J. Mater. Chem. A 1 (2013), 7255–7261.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 7255-7261
-
-
Ren, F.1
Wang, C.2
Zhai, C.3
Jiang, F.4
Yue, R.5
Du, Y.6
Yang, P.7
Xu, J.8
-
38
-
-
84868089063
-
Enhanced photocatalytic hydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxide hybrid
-
[38] Zhu, M., Dong, Y., Xiao, B., Du, Y., Yang, P., Wang, X., Enhanced photocatalytic hydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxide hybrid. J. Mater. Chem. 22 (2012), 23773–23779.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 23773-23779
-
-
Zhu, M.1
Dong, Y.2
Xiao, B.3
Du, Y.4
Yang, P.5
Wang, X.6
-
39
-
-
84947586910
-
Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite
-
[39] Ahmad, A., Gu, X., Li, L., Lv, S., Xu, Y., Guo, X., Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. Environ. Sci. Pollut. Res. 22 (2015), 17876–17885.
-
(2015)
Environ. Sci. Pollut. Res.
, vol.22
, pp. 17876-17885
-
-
Ahmad, A.1
Gu, X.2
Li, L.3
Lv, S.4
Xu, Y.5
Guo, X.6
-
40
-
-
50849126547
-
Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli
-
[40] Auffan, M., Achouak, W., Rose, J., Roncato, M.-A., Chanéac, C., Waite, D.T., Masion, A., Woicik, J.C., Wiesner, M.R., Bottero, J.-Y., Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 42 (2008), 6730–6735.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 6730-6735
-
-
Auffan, M.1
Achouak, W.2
Rose, J.3
Roncato, M.-A.4
Chanéac, C.5
Waite, D.T.6
Masion, A.7
Woicik, J.C.8
Wiesner, M.R.9
Bottero, J.-Y.10
-
41
-
-
79951579205
-
Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron
-
[41] Chen, J., Xiu, Z., Lowry, G.V., Alvarez, P.J.J., Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res. 45 (2011), 1995–2001.
-
(2011)
Water Res.
, vol.45
, pp. 1995-2001
-
-
Chen, J.1
Xiu, Z.2
Lowry, G.V.3
Alvarez, P.J.J.4
-
42
-
-
84905842530
-
2 sheets
-
2 sheets. Nanoscale 6 (2014), 10126–10133.
-
(2014)
Nanoscale
, vol.6
, pp. 10126-10133
-
-
Yang, X.1
Li, J.2
Liang, T.3
Ma, C.4
Zhang, Y.5
Chen, H.6
Hanagata, N.7
Su, H.8
Xu, M.9
-
43
-
-
77957325055
-
Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes
-
[43] Vecitis, C.D., Zodrow, K.R., Kang, S., Elimelech, M., Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4 (2010), 5471–5479.
-
(2010)
ACS Nano
, vol.4
, pp. 5471-5479
-
-
Vecitis, C.D.1
Zodrow, K.R.2
Kang, S.3
Elimelech, M.4
-
44
-
-
84929104822
-
2, air or without aeration
-
2, air or without aeration. J. Hazard. Mater. 297 (2015), 261–268.
-
(2015)
J. Hazard. Mater.
, vol.297
, pp. 261-268
-
-
Xiong, Z.1
Lai, B.2
Yang, P.3
Zhou, Y.4
Wang, J.5
Fang, S.6
-
45
-
-
84901191487
-
Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites
-
[45] Deng, C.-H., Gong, J.-L., Zeng, G.-M., Niu, C.-G., Niu, Q.-Y., Zhang, W., Liu, H.-Y., Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites. J. Hazard. Mater. 276 (2014), 66–76.
-
(2014)
J. Hazard. Mater.
, vol.276
, pp. 66-76
-
-
Deng, C.-H.1
Gong, J.-L.2
Zeng, G.-M.3
Niu, C.-G.4
Niu, Q.-Y.5
Zhang, W.6
Liu, H.-Y.7
-
46
-
-
3042934967
-
Tissue sulfhydryl groups
-
[46] Ellman, G.L., Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 (1959), 70–77.
-
(1959)
Arch. Biochem. Biophys.
, vol.82
, pp. 70-77
-
-
Ellman, G.L.1
-
47
-
-
84890922670
-
The role of iron and reactive oxygen species in cell death
-
[47] Dixon, S.J., Stockwell, B.R., The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10 (2014), 9–17.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 9-17
-
-
Dixon, S.J.1
Stockwell, B.R.2
-
48
-
-
84877927889
-
Understanding iron: promoting its safe use in patients with chronic kidney failure treated by hemodialysis
-
[48] Vaziri, N.D., Understanding iron: promoting its safe use in patients with chronic kidney failure treated by hemodialysis. Am. J. Kidney Dis. 61 (2013), 992–1000.
-
(2013)
Am. J. Kidney Dis.
, vol.61
, pp. 992-1000
-
-
Vaziri, N.D.1
-
49
-
-
84878014208
-
Antimicrobial activity of metals: mechanisms, molecular targets and applications
-
[49] Lemire, J.A., Harrison, J.J., Turner, R.J., Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11 (2013), 371–384.
-
(2013)
Nat. Rev. Microbiol.
, vol.11
, pp. 371-384
-
-
Lemire, J.A.1
Harrison, J.J.2
Turner, R.J.3
-
50
-
-
75749099710
-
Sandwiched graphene-membrane superstructures
-
[50] Titov, A.V., Král, P., Pearson, R., Sandwiched graphene-membrane superstructures. ACS Nano 4 (2010), 229–234.
-
(2010)
ACS Nano
, vol.4
, pp. 229-234
-
-
Titov, A.V.1
Král, P.2
Pearson, R.3
|