메뉴 건너뛰기




Volumn 35, Issue 19, 2016, Pages 3272-3284

Intra-cluster correlation selection for cluster randomized trials

Author keywords

empirical covariance matrix; generalized estimating equations; group randomized trial; power; variance inflation

Indexed keywords

CLINICAL TRIAL; CONTROLLED CLINICAL TRIAL; CORRELATION COEFFICIENT; COVARIANCE; ERROR; HUMAN; RANDOMIZED CONTROLLED TRIAL;

EID: 84977618885     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6922     Document Type: Article
Times cited : (8)

References (52)
  • 6
    • 0035977431 scopus 로고    scopus 로고
    • Current and future challenges in the design and analysis of cluster randomization trials
    • Klar N, Donner A. Current and future challenges in the design and analysis of cluster randomization trials. Statistics in Medicine 2001; 20:3729–3740.
    • (2001) Statistics in Medicine , vol.20 , pp. 3729-3740
    • Klar, N.1    Donner, A.2
  • 7
    • 83455169067 scopus 로고    scopus 로고
    • A new dependence parameter approach to improve the design of cluster randomized trials with binary outcomes
    • Crespi CM, Wong WK, Wu S. A new dependence parameter approach to improve the design of cluster randomized trials with binary outcomes. Clinical Trials 2011; 8:687–698.
    • (2011) Clinical Trials , vol.8 , pp. 687-698
    • Crespi, C.M.1    Wong, W.K.2    Wu, S.3
  • 8
    • 79957444411 scopus 로고    scopus 로고
    • Cluster randomized trials of cancer screening interventions: are appropriate statistical methods being used?
    • Crespi CM, Maxwell AE, Wu S. Cluster randomized trials of cancer screening interventions: are appropriate statistical methods being used?. Contemporary Clinical Trials 2011; 32:477–484.
    • (2011) Contemporary Clinical Trials , vol.32 , pp. 477-484
    • Crespi, C.M.1    Maxwell, A.E.2    Wu, S.3
  • 9
    • 58749099140 scopus 로고    scopus 로고
    • Finite sample adjustments in estimating equations and covariance estimators for intracluster correlations
    • Preisser JS, Lu B, Qaqish BF. Finite sample adjustments in estimating equations and covariance estimators for intracluster correlations. Statistics in Medicine 2008; 27:5764–5785.
    • (2008) Statistics in Medicine , vol.27 , pp. 5764-5785
    • Preisser, J.S.1    Lu, B.2    Qaqish, B.F.3
  • 11
    • 16444382662 scopus 로고    scopus 로고
    • Long-term results from a randomized controlled trial to increase cancer screening among attendees of community health centers
    • Roetzheim RG, Christman LK, Jacobsen PB, Schroeder J, Abdulla R, Hunter S. Long-term results from a randomized controlled trial to increase cancer screening among attendees of community health centers. Annals of Family Medicine 2005; 3:109–114.
    • (2005) Annals of Family Medicine , vol.3 , pp. 109-114
    • Roetzheim, R.G.1    Christman, L.K.2    Jacobsen, P.B.3    Schroeder, J.4    Abdulla, R.5    Hunter, S.6
  • 12
    • 70449597258 scopus 로고    scopus 로고
    • Analysis of group randomized trials with multiple binary endpoints and small number of groups
    • Lee JH, Schell MJ, Roetzheim R. Analysis of group randomized trials with multiple binary endpoints and small number of groups. PLoS ONE 2009; 4:e7265. DOI: 10.1371/journal.pone.0007265.
    • (2009) PLoS ONE , vol.4
    • Lee, J.H.1    Schell, M.J.2    Roetzheim, R.3
  • 13
    • 77449131310 scopus 로고    scopus 로고
    • The intra-cluster correlation coefficient in cluster randomized trials: a review of definitions
    • Eldridge SM, Ukoumunne O, Carlin J. The intra-cluster correlation coefficient in cluster randomized trials: a review of definitions. International Statistical Review 2009; 77:378–394.
    • (2009) International Statistical Review , vol.77 , pp. 378-394
    • Eldridge, S.M.1    Ukoumunne, O.2    Carlin, J.3
  • 14
    • 64549086786 scopus 로고    scopus 로고
    • Using second-order generalized estimating equations to model heterogeneous intraclass correlation in cluster-randomized trials
    • Crespi CM, Wong WK, Mishra SI. Using second-order generalized estimating equations to model heterogeneous intraclass correlation in cluster-randomized trials. Statistics in Medicine 2009; 28:814–827.
    • (2009) Statistics in Medicine , vol.28 , pp. 814-827
    • Crespi, C.M.1    Wong, W.K.2    Mishra, S.I.3
  • 15
    • 0034668135 scopus 로고    scopus 로고
    • Analysis of a cluster randomized trial with binary outcome data using a multi-level model
    • Omar RZ, Thompson SG. Analysis of a cluster randomized trial with binary outcome data using a multi-level model. Statistics in Medicine 2000; 19:2675–2688.
    • (2000) Statistics in Medicine , vol.19 , pp. 2675-2688
    • Omar, R.Z.1    Thompson, S.G.2
  • 16
    • 0035865954 scopus 로고    scopus 로고
    • Bayesian methods of analysis for cluster randomized trials with binary outcome data
    • Turner RM, Omar RZ, Thompson SG. Bayesian methods of analysis for cluster randomized trials with binary outcome data. Statistics in Medicine 2001; 20:453–472.
    • (2001) Statistics in Medicine , vol.20 , pp. 453-472
    • Turner, R.M.1    Omar, R.Z.2    Thompson, S.G.3
  • 18
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13–22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 19
    • 3843096981 scopus 로고    scopus 로고
    • Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance
    • Wang Y-G, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 2003; 90:29–41.
    • (2003) Biometrika , vol.90 , pp. 29-41
    • Wang, Y.-G.1    Carey, V.2
  • 20
    • 0035865991 scopus 로고    scopus 로고
    • Putting theory into practice: a cluster randomized trial with a small number of clusters
    • Yudkin PL, Moher M. Putting theory into practice: a cluster randomized trial with a small number of clusters. Statistics in Medicine 2001; 20:341–349.
    • (2001) Statistics in Medicine , vol.20 , pp. 341-349
    • Yudkin, P.L.1    Moher, M.2
  • 21
    • 84879180863 scopus 로고    scopus 로고
    • A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix
    • Westgate PM. A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix. Statistics in Medicine 2013; 32:2850–2858.
    • (2013) Statistics in Medicine , vol.32 , pp. 2850-2858
    • Westgate, P.M.1
  • 22
    • 84945208209 scopus 로고    scopus 로고
    • A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices
    • Westgate PM. A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices. Journal of Statistical Computation and Simulation 2016: 86(10):1891–1900.
    • (2016) Journal of Statistical Computation and Simulation , vol.86 , Issue.10 , pp. 1891-1900
    • Westgate, P.M.1
  • 23
    • 84899967344 scopus 로고    scopus 로고
    • Improving the correlation structure selection approach for generalized estimating equations and balanced longitudinal data
    • Westgate PM. Improving the correlation structure selection approach for generalized estimating equations and balanced longitudinal data. Statistics in Medicine 2014; 33:2222–2237.
    • (2014) Statistics in Medicine , vol.33 , pp. 2222-2237
    • Westgate, P.M.1
  • 24
    • 0016335739 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • Wedderburn RWM. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 1974; 61:439–447.
    • (1974) Biometrika , vol.61 , pp. 439-447
    • Wedderburn, R.W.M.1
  • 25
    • 84863978389 scopus 로고    scopus 로고
    • SAS Institute Inc, Cary, NC
    • SAS Institute Inc. SAS/STAT 9.3, User's Guide. SAS Institute Inc: Cary, NC, 2011.
    • (2011) SAS/STAT 9.3, User's Guide
  • 26
    • 0024266392 scopus 로고
    • Correlated binary regression with covariates specific to each binary observation
    • Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033–1048.
    • (1988) Biometrics , vol.44 , pp. 1033-1048
    • Prentice, R.L.1
  • 28
    • 78650929390 scopus 로고    scopus 로고
    • Improving small-sample inference in group randomized trials with binary outcomes
    • Westgate PM, Braun TM. Improving small-sample inference in group randomized trials with binary outcomes. Statistics in Medicine 2011; 30:201–210.
    • (2011) Statistics in Medicine , vol.30 , pp. 201-210
    • Westgate, P.M.1    Braun, T.M.2
  • 29
    • 84883366725 scopus 로고    scopus 로고
    • On small-sample inference in group randomized trials with binary outcomes and cluster-level covariates
    • Westgate PM. On small-sample inference in group randomized trials with binary outcomes and cluster-level covariates. Biometrical Journal 2013; 55:789–806.
    • (2013) Biometrical Journal , vol.55 , pp. 789-806
    • Westgate, P.M.1
  • 30
    • 0035099161 scopus 로고    scopus 로고
    • A covariance estimator for GEE with improved small-sample properties
    • Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties. Biometrics 2001; 57:126–134.
    • (2001) Biometrics , vol.57 , pp. 126-134
    • Mancl, L.A.1    DeRouen, T.A.2
  • 32
    • 34547882049 scopus 로고    scopus 로고
    • A comparison of two bias-corrected covariance estimators for generalized estimating equations
    • Lu B, Preisser JS, Qaqish BF, Suchindran C, Bangdiwala SI, Wolfson M. A comparison of two bias-corrected covariance estimators for generalized estimating equations. Biometrics 2007; 63:935–941.
    • (2007) Biometrics , vol.63 , pp. 935-941
    • Lu, B.1    Preisser, J.S.2    Qaqish, B.F.3    Suchindran, C.4    Bangdiwala, S.I.5    Wolfson, M.6
  • 33
    • 84916233304 scopus 로고    scopus 로고
    • Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes
    • Li P, Redden DT. Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes. Statistics in Medicine 2014; 34:281–296.
    • (2014) Statistics in Medicine , vol.34 , pp. 281-296
    • Li, P.1    Redden, D.T.2
  • 34
    • 63149190796 scopus 로고    scopus 로고
    • Working-correlation-structure identification in generalized estimating equations
    • Hin L-Y, Wang Y-G. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine 2009; 28:642–658.
    • (2009) Statistics in Medicine , vol.28 , pp. 642-658
    • Hin, L.-Y.1    Wang, Y.-G.2
  • 35
    • 0035865953 scopus 로고    scopus 로고
    • Analysis of cluster randomized trials with repeated cross-sectional binary measurements
    • Ukoumunne OC, Thompson SG. Analysis of cluster randomized trials with repeated cross-sectional binary measurements. Statistics in Medicine 2001; 20:417–433.
    • (2001) Statistics in Medicine , vol.20 , pp. 417-433
    • Ukoumunne, O.C.1    Thompson, S.G.2
  • 36
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997; 53:983–997.
    • (1997) Biometrics , vol.53 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 37
    • 61849100484 scopus 로고    scopus 로고
    • An improved approximation to the precision of fixed effects from restricted maximum likelihood
    • Kenward MG, Roger JH. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics and Data Analysis 2009; 53:2583–2595.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 2583-2595
    • Kenward, M.G.1    Roger, J.H.2
  • 38
    • 70350184453 scopus 로고
    • Approximations for standard errors of estimators of fixed and random effects in mixed linear models
    • Kackar RN, Harville DA. Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association 1984; 79:853–862.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 853-862
    • Kackar, R.N.1    Harville, D.A.2
  • 39
  • 41
    • 84905448145 scopus 로고    scopus 로고
    • Propensity score methods for estimating relative risks in cluster randomized trials with low-incidence binary outcomes and selection bias
    • Leyrat C, Caille A, Donner A, Giraudeau B. Propensity score methods for estimating relative risks in cluster randomized trials with low-incidence binary outcomes and selection bias. Statistics in Medicine 2014; 33:3556–3575.
    • (2014) Statistics in Medicine , vol.33 , pp. 3556-3575
    • Leyrat, C.1    Caille, A.2    Donner, A.3    Giraudeau, B.4
  • 42
    • 80051792409 scopus 로고    scopus 로고
    • On fitting generalized linear mixed-effects models for binary responses using different statistical packages
    • Zhang H, Lu N, Feng C, Thurston S, Xia Y, Zhu L, Tu XM. On fitting generalized linear mixed-effects models for binary responses using different statistical packages. Statistics in Medicine 2011; 30:2562–2572.
    • (2011) Statistics in Medicine , vol.30 , pp. 2562-2572
    • Zhang, H.1    Lu, N.2    Feng, C.3    Thurston, S.4    Xia, Y.5    Zhu, L.6    Tu, X.M.7
  • 43
    • 0023689692 scopus 로고
    • The statistical analysis of multiple binary measurements
    • Donner A, Donald A. The statistical analysis of multiple binary measurements. Journal of Clinical Epidemiology 1988; 41:899–905.
    • (1988) Journal of Clinical Epidemiology , vol.41 , pp. 899-905
    • Donner, A.1    Donald, A.2
  • 44
    • 0344097409 scopus 로고    scopus 로고
    • Estimating intraclass correlation for binary data
    • Ridout MS, Demetrio CGB, Firth D. Estimating intraclass correlation for binary data. Biometrics 1999; 55:137–148.
    • (1999) Biometrics , vol.55 , pp. 137-148
    • Ridout, M.S.1    Demetrio, C.G.B.2    Firth, D.3
  • 45
    • 84864297644 scopus 로고    scopus 로고
    • Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials
    • Wu S, Crespi CM, Wong WK. Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials. Contemporary Clinical Trials 2012; 33:869–880.
    • (2012) Contemporary Clinical Trials , vol.33 , pp. 869-880
    • Wu, S.1    Crespi, C.M.2    Wong, W.K.3
  • 46
    • 69949092151 scopus 로고    scopus 로고
    • Measures of between-cluster variability in cluster randomized trials with binary outcomes
    • Thomson A, Hayes R, Cousens S. Measures of between-cluster variability in cluster randomized trials with binary outcomes. Statistics in Medicine 2009; 28:1739–1751.
    • (2009) Statistics in Medicine , vol.28 , pp. 1739-1751
    • Thomson, A.1    Hayes, R.2    Cousens, S.3
  • 49
    • 0000429149 scopus 로고
    • Modelling multivariate binary data with alternating logistic regressions
    • Carey V, Zeger SL, Diggle P. Modelling multivariate binary data with alternating logistic regressions. Biometrika 1993; 80:517–526.
    • (1993) Biometrika , vol.80 , pp. 517-526
    • Carey, V.1    Zeger, S.L.2    Diggle, P.3
  • 51
    • 84906835964 scopus 로고    scopus 로고
    • Small sample GEE estimation of regression parameters for longitudinal data
    • Paul S, Zhang X. Small sample GEE estimation of regression parameters for longitudinal data. Statistics in Medicine 2014; 33:3869–3881.
    • (2014) Statistics in Medicine , vol.33 , pp. 3869-3881
    • Paul, S.1    Zhang, X.2
  • 52
    • 79961135005 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria, Available from
    • R Development Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2011. prefixhttp://www.R-project.org/, ISBN 3-900051-07-0. Available from: http://www.R-project.org.
    • (2011) R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.