메뉴 건너뛰기




Volumn 9, Issue 4, 2016, Pages 372-383

CLAMShell: Speeding up crowds for low-latency data labeling

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; AMAZON'S MECHANICAL TURKS; DATA LABELING; INTERACTIVE SYSTEM; LABELING STRATEGY; LOW LATENCY; NOVEL TECHNIQUES;

EID: 84976515556     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: None     Document Type: Chapter
Times cited : (47)

References (57)
  • 1
    • 84976479772 scopus 로고    scopus 로고
    • Invisible loading: access-driven data transfer from raw files into database systems
    • EDBT
    • Abouzied, D. J. Abadi, and A. Silberschatz. Invisible loading: access-driven data transfer from raw files into database systems. EDBT, 2013.
    • (2013)
    • Abadi, D.J.1    Silberschatz, A.2
  • 2
    • 84856343452 scopus 로고    scopus 로고
    • Sentiment analysis of Twitter data
    • LASM
    • Agarwal et al. Sentiment analysis of Twitter data. LASM, 2011.
    • (2011)
  • 3
    • 84978770379 scopus 로고    scopus 로고
    • Reining in the Outliers in Map- Reduce Clusters using Mantri
    • OSDI
    • Ananthanarayanan et al. Reining in the Outliers in Map- Reduce Clusters using Mantri. OSDI, 2010.
    • (2010)
  • 4
    • 85076690211 scopus 로고    scopus 로고
    • Effective Straggler Mitigation: Attack of the Clones
    • NSDI
    • Ananthanarayanan et al. Effective Straggler Mitigation: Attack of the Clones. NSDI, 2013.
    • (2013)
  • 5
    • 80755144058 scopus 로고    scopus 로고
    • Crowds in two seconds: enabling realtime crowd-powered interfaces
    • UIST
    • S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger. Crowds in two seconds: enabling realtime crowd-powered interfaces. UIST, 2011.
    • (2011)
    • Bernstein, S.1    Brandt, J.2    Miller, R.C.3    Karger, D.R.4
  • 6
    • 84909972693 scopus 로고    scopus 로고
    • Soylent: a word processor with a crowd inside
    • UIST
    • S. Bernstein et al. Soylent: a word processor with a crowd inside. UIST, 2010.
    • (2010)
    • Bernstein, S.1
  • 7
    • 84868532270 scopus 로고    scopus 로고
    • Analytic Methods for Optimizing Realtime Crowdsourcing
    • Col- lective Intelligence
    • S. Bernstein, D. R. Karger, R. C. Miller, and J. Brandt. Analytic Methods for Optimizing Realtime Crowdsourcing. Col- lective Intelligence, 2012.
    • (2012)
    • Bernstein, S.1    Karger, D.R.2    Miller, R.C.3    Brandt, J.4
  • 8
    • 84971202654 scopus 로고    scopus 로고
    • VizWiz: nearly real-time answers to visual questions
    • UIST
    • P. Bigham et al. VizWiz: nearly real-time answers to visual questions. UIST, 2010.
    • (2010)
    • Bigham, P.1
  • 9
    • 80053402398 scopus 로고    scopus 로고
    • Fast, cheap, and creative: evaluating translation quality using Amazon's Mechanical Turk
    • EMNLP
    • Callison-Burch. Fast, cheap, and creative: evaluating translation quality using Amazon's Mechanical Turk. EMNLP, 2009.
    • (2009)
  • 10
    • 84937420560 scopus 로고    scopus 로고
    • Adaptive Batch Mode Active Learning
    • Trans. Neural Netw. Learning Sys.
    • S. Chakraborty et al. Adaptive Batch Mode Active Learning. Trans. Neural Netw. Learning Sys., 2015.
    • (2015)
    • Chakraborty, S.1
  • 11
    • 0029679131 scopus 로고    scopus 로고
    • Active Learning with Statistical Models
    • JAIR
    • D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active Learning with Statistical Models. JAIR, 1996.
    • (1996)
    • Cohn, D.A.1    Ghahramani, Z.2    Jordan, M.I.3
  • 12
    • 84901813373 scopus 로고    scopus 로고
    • Crowd-powered find algorithms
    • ICDE
    • A. Das Sarma et al. Crowd-powered find algorithms. ICDE, 2014.
    • (2014)
    • Das Sarma, A.1
  • 13
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • Communications of the ACM
    • J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008.
    • (2008)
    • Dean, J.1    Ghemawat, S.2
  • 14
    • 84880536474 scopus 로고    scopus 로고
    • Hekaton: SQL server's memory-optimized OLTP engine
    • SIGMOD
    • C. Diaconu et al. Hekaton: SQL server's memory-optimized OLTP engine. SIGMOD, 2013.
    • (2013)
    • Diaconu, C.1
  • 15
    • 85143178415 scopus 로고    scopus 로고
    • CrowdDB: answering queries with crowdsourcing
    • SIGMOD
    • M. J. Franklin et al. CrowdDB: answering queries with crowdsourcing. SIGMOD, 2011.
    • (2011)
    • Franklin, M.J.1
  • 16
    • 84936873985 scopus 로고    scopus 로고
    • Finish them!: Pricing algorithms for human computatio
    • PVLDB
    • Y. Gao and A. G. Parameswaran. Finish them!: Pricing algorithms for human computation. PVLDB, 7(14):1965-1976, 2014.
    • (2014) , vol.7 , Issue.14 , pp. 1965-1976
    • Gao, Y.1    Parameswaran, A.G.2
  • 17
    • 79957859069 scopus 로고    scopus 로고
    • SystemML: Declarative machine learning on MapReduce
    • ICDE
    • A. Ghoting et al. SystemML: Declarative machine learning on MapReduce. ICDE, 2011.
    • (2011)
    • Ghoting, A.1
  • 18
    • 84904317392 scopus 로고    scopus 로고
    • Corleone: hands-off crowdsourcing for entity matching
    • SIGMOD
    • C. Gokhale et al. Corleone: hands-off crowdsourcing for entity matching. SIGMOD, 2014.
    • (2014)
    • Gokhale, C.1
  • 19
    • 85072980230 scopus 로고    scopus 로고
    • PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs
    • OSDI
    • J. E. Gonzalez et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. OSDI, 2012.
    • (2012)
    • Gonzalez, J.E.1
  • 20
    • 84976497774 scopus 로고    scopus 로고
    • Design of experiments for the NIPS 2003 variable selection benchmark
    • I. Guyon. Design of experiments for the NIPS 2003 variable selection benchmark, 2003.
    • (2003)
    • Guyon, I.1
  • 21
    • 85199264785 scopus 로고    scopus 로고
    • Wisteria: Nurturing Scalable Data Cleaning Infrastructure
    • VLDB
    • D. Haas, S. Krishnan, J. Wang, M. J. Franklin, and E. Wu. Wisteria: Nurturing Scalable Data Cleaning Infrastructure. VLDB, 2015.
    • (2015)
    • Haas, D.1    Krishnan, S.2    Wang, J.3    Franklin, M.J.4    Wu, E.5
  • 22
    • 84976472051 scopus 로고    scopus 로고
    • Hadoop. http://hadoop.apache.org/.
  • 23
    • 84976480554 scopus 로고    scopus 로고
    • Visualizations of the oDesk "oConomy": Exploring Our World of Work
    • P. Ipeirotis and J. Horton. Visualizations of the oDesk "oConomy": Exploring Our World of Work. https://www.upwork.com/ blog/2012/07/visualizations-of-odesk-oconomy/, 2012.
    • (2012)
    • Ipeirotis, P.1    Horton, J.2
  • 24
    • 79957968691 scopus 로고    scopus 로고
    • Analyzing the Amazon Mechanical Turk marketplace
    • ACM Crossroads
    • P. G. Ipeirotis. Analyzing the Amazon Mechanical Turk marketplace. ACM Crossroads, 2010.
    • (2010)
    • Ipeirotis, P.G.1
  • 25
    • 78650794801 scopus 로고    scopus 로고
    • Quality management on Amazon Mechanical Turk
    • SIGKDD
    • P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on Amazon Mechanical Turk. SIGKDD, 2010.
    • (2010)
    • Ipeirotis, P.G.1    Provost, F.2    Wang, J.3
  • 26
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Science
    • M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 2015.
    • (2015)
    • Jordan, M.I.1    Mitchell, T.M.2
  • 27
    • 84901810315 scopus 로고    scopus 로고
    • M4: A Visualization-Oriented Time Series Data Aggregation
    • VLDB
    • U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A Visualization-Oriented Time Series Data Aggregation. VLDB, 2014.
    • (2014)
    • Jugel, U.1    Jerzak, Z.2    Hackenbroich, G.3    Markl, V.4
  • 28
    • 84896843181 scopus 로고    scopus 로고
    • Wrangler: interactive visual specification of data transformation scripts
    • CHI
    • S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Wrangler: interactive visual specification of data transformation scripts. CHI, 2011.
    • (2011)
    • Kandel, S.1    Paepcke, A.2    Hellerstein, J.M.3    Heer, J.4
  • 29
    • 85162483531 scopus 로고    scopus 로고
    • Iterative Learning for Reliable Crowdsourcing Systems
    • Advances in neural information processing systems (NIPS)
    • D. R. Karger, S. Oh, and D. Shah. Iterative Learning for Reliable Crowdsourcing Systems. Advances in neural information processing systems (NIPS), 2011.
    • (2011)
    • Karger, D.R.1    Oh, S.2    Shah, D.3
  • 31
    • 79960839773 scopus 로고    scopus 로고
    • Crowdsourcing user studies with Mechanical Turk
    • CHI
    • A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with Mechanical Turk. CHI, 2008.
    • (2008)
    • Kittur, A.1    Chi, E.H.2    Suh, B.3
  • 32
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • A. Krizhevsky. Learning multiple layers of features from tiny images, 2009.
    • (2009)
    • Krizhevsky, A.1
  • 33
    • 84941029070 scopus 로고    scopus 로고
    • Sustained work, fatigue, sleep loss and performance: A review of the issues
    • Work and Stress
    • G. P. Krueger. Sustained work, fatigue, sleep loss and performance: A review of the issues. Work and Stress, 2007.
    • (2007)
    • Krueger, G.P.1
  • 34
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognitio
    • Y. LeCun et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1
  • 35
    • 84938646545 scopus 로고    scopus 로고
    • imMens: Real-time Visual Querying of Big Data
    • EuroVis
    • Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Querying of Big Data. EuroVis, 2013.
    • (2013)
    • Liu, Z.1    Jiang, B.2    Heer, J.3
  • 37
    • 84976484058 scopus 로고    scopus 로고
    • Crowdsourced data management industry and academic perspectives
    • Foundations and Trends in Databases
    • A. Marcus and A. Parameswaran. Crowdsourced data management industry and academic perspectives. Foundations and Trends in Databases, 2015.
    • (2015)
    • Marcus, A.1    Parameswaran, A.2
  • 39
    • 79958258284 scopus 로고    scopus 로고
    • Dremel: interactive analysis of web-scale datasets
    • VLDB
    • S. Melnik et al. Dremel: interactive analysis of web-scale datasets. VLDB, 2010.
    • (2010)
    • Melnik, S.1
  • 40
    • 84943360496 scopus 로고    scopus 로고
    • MLlib: Machine Learning in Apache Spark
    • arXiv.org
    • X. Meng et al. MLlib: Machine Learning in Apache Spark. arXiv.org, 2015.
    • (2015)
    • Meng, X.1
  • 41
    • 85199253853 scopus 로고    scopus 로고
    • Scaling up crowd-sourcing to very large datasets: a case for active learning
    • VLDB
    • B. Mozafari et al. Scaling up crowd-sourcing to very large datasets: a case for active learning. VLDB, 2014.
    • (2014)
    • Mozafari, B.1
  • 42
    • 84976493919 scopus 로고    scopus 로고
    • Amazon Mechanical Turk. https://www.mturk.com/.
  • 43
    • 84891099231 scopus 로고    scopus 로고
    • Instant loading for main memory databases
    • VLDB
    • T. Mühlbauer et al. Instant loading for main memory databases. VLDB, 2013.
    • (2013)
    • Mühlbauer, T.1
  • 44
    • 84899534167 scopus 로고    scopus 로고
    • DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit
    • HCOMP
    • A. G. Parameswaran et al. DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. HCOMP, 2013.
    • (2013)
    • Parameswaran, A.G.1
  • 45
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Pytho
    • F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 46
    • 84880549308 scopus 로고    scopus 로고
    • Identifying Reliable Workers Swiftly
    • Technical report, Stanford University
    • A. Ramesh et al. Identifying Reliable Workers Swiftly. Technical report, Stanford University, 2012.
    • (2012)
    • Ramesh, A.1
  • 47
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • Technical report, University of Wisconsin-Madison
    • B. Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison, 2010.
    • (2010)
    • Settles, B.1
  • 48
    • 33745618477 scopus 로고    scopus 로고
    • C-store: a column-oriented DBMS
    • VLDB
    • M. Stonebraker et al. C-store: a column-oriented DBMS. VLDB, 2005.
    • (2005)
    • Stonebraker, M.1
  • 49
    • 85084016251 scopus 로고    scopus 로고
    • Data Curation at Scale: The Data Tamer System
    • CIDR
    • M. Stonebraker et al. Data Curation at Scale: The Data Tamer System. CIDR, 2013.
    • (2013)
    • Stonebraker, M.1
  • 51
    • 84872946975 scopus 로고    scopus 로고
    • CrowdER: Crowdsourcing Entity Resolution
    • VLDB
    • J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER: Crowdsourcing Entity Resolution. VLDB, 2012.
    • (2012)
    • Wang, J.1    Kraska, T.2    Franklin, M.J.3    Feng, J.4
  • 52
    • 84904301041 scopus 로고    scopus 로고
    • A sample-and-clean framework for fast and accurate query processing on dirty data
    • SIGMOD
    • J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A sample-and-clean framework for fast and accurate query processing on dirty data. SIGMOD, 2014.
    • (2014)
    • Wang, J.1    Krishnan, S.2    Franklin, M.J.3    Goldberg, K.4    Kraska, T.5    Milo, T.6
  • 53
    • 84899676319 scopus 로고    scopus 로고
    • Bin-summarise-smooth: a framework for visualising large data
    • Technical report, RStudio
    • H. Wickham. Bin-summarise-smooth: a framework for visualising large data. Technical report, RStudio, 2013.
    • (2013)
    • Wickham, H.1
  • 54
    • 84901762481 scopus 로고    scopus 로고
    • The Case for Data Visualization Management Systems
    • VLDB
    • E. Wu, L. Battle, and S. R. Madden. The Case for Data Visualization Management Systems. VLDB, 2014.
    • (2014)
    • Wu, E.1    Battle, L.2    Madden, S.R.3
  • 55
    • 62749207467 scopus 로고    scopus 로고
    • Improving MapReduce Performance in Heterogeneous Environments
    • OSDI
    • M. Zaharia et al. Improving MapReduce Performance in Heterogeneous Environments. OSDI, 2008.
    • (2008)
    • Zaharia, M.1
  • 56
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • NSDI
    • M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. NSDI, 2012.
    • (2012)
    • Zaharia, M.1
  • 57
    • 84864270395 scopus 로고    scopus 로고
    • Vectorwise: A Vectorized Analytical DBMS
    • ICDE
    • M. Zukowski, M. van de Wiel, and P. A. Boncz. Vectorwise: A Vectorized Analytical DBMS. ICDE, 2012.
    • (2012)
    • Zukowski, M.1    van de Wiel, M.2    Boncz, P.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.