-
1
-
-
84938134328
-
-
Crowdsourced data analysis with Clockwork Raven
-
Crowdsourced data analysis with Clockwork Raven. https://blog.twitter.com/2012/crowdsourced-data-analysis-with-clockworkraven.
-
-
-
-
2
-
-
84938134329
-
-
Crowdsourcing Insights from eBay, Retrieved 10 January
-
Crowdsourcing Insights from eBay (Retrieved 10 January 2014). http://crowdopolis.info/james-rubinstein.pdf.
-
(2014)
-
-
-
3
-
-
84938134330
-
-
Mechanical Turk, Retrieved 22 July
-
Mechanical Turk (Retrieved 22 July 2013). http://www.mturk.com.
-
(2013)
-
-
-
4
-
-
84938134331
-
-
Mechanical Turk Tracker, Retrieved 20 February
-
Mechanical Turk Tracker (Retrieved 20 February 2014). http://mturk-tracker.com.
-
(2014)
-
-
-
5
-
-
84938134332
-
-
Microsoft Wants to Turn Crowdsourcing from an Art to a Science, Retrieved 10 January
-
Microsoft Wants to Turn Crowdsourcing from an Art to a Science (Retrieved 10 January 2014). http://www.crowdsourcing.org/editorial/microsoft-wants-toturn-crowdsourcing-from-an-art-into-a-science/21233.
-
(2014)
-
-
-
6
-
-
84938134333
-
-
Samasource Annual Report, Retrieved 10 January
-
Samasource Annual Report (Retrieved 10 January 2014). http://www.slideshare.net/leila_c/samasource-2011-annual-report.
-
(2014)
-
-
-
7
-
-
85028488113
-
The Pay? 0 an Hour. The New York Times
-
Translators Wanted at LinkedIn, Retrieved 10 January
-
Translators Wanted at LinkedIn. The Pay? 0 an Hour. The New York Times (Retrieved 10 January 2014). http://www.nytimes.com/2009/06/29/technology/start-ups/29linkedin.html.
-
(2014)
-
-
-
8
-
-
65249129950
-
Crowdsourcing for relevance evaluation
-
O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance evaluation. SIGIR Forum, 42(2):9-15, 2008.
-
(2008)
SIGIR Forum
, vol.42
, Issue.2
, pp. 9-15
-
-
Alonso, O.1
Rose, D.E.2
Stewart, B.3
-
9
-
-
63749125944
-
Purple sox extraction management system
-
P. Bohannon, S. Merugu, C. Yu, V. Agarwal, P. DeRose, A. S. Iyer, A. Jain, V. Kakade, M. Muralidharan, R. Ramakrishnan, and W. Shen. Purple sox extraction management system. SIGMOD Record, 37(4):21-27, 2008.
-
(2008)
SIGMOD Record
, vol.37
, Issue.4
, pp. 21-27
-
-
Bohannon, P.1
Merugu, S.2
Yu, C.3
Agarwal, V.4
DeRose, P.5
Iyer, A.S.6
Jain, A.7
Kakade, V.8
Muralidharan, M.9
Ramakrishnan, R.10
Shen, W.11
-
11
-
-
77952254925
-
Minimizing database repros using language grammars
-
N. Bruno. Minimizing database repros using language grammars. In EDBT, pages 382-393, 2010.
-
(2010)
EDBT
, pp. 382-393
-
-
Bruno, N.1
-
12
-
-
79960210896
-
Decision-theoretic control of crowd-sourced workflows
-
P. Dai, Mausam, and D. S. Weld. Decision-theoretic control of crowd-sourced workflows. In AAAI, 2010.
-
(2010)
AAAI
-
-
Dai Mausam, P.1
Weld, D.S.2
-
13
-
-
84893096721
-
Aggregating crowdsourced binary ratings
-
N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi. Aggregating crowdsourced binary ratings. In WWW, pages 285-294, 2013.
-
(2013)
WWW
, pp. 285-294
-
-
Dalvi, N.1
Dasgupta, A.2
Kumar, R.3
Rastogi, V.4
-
14
-
-
84875617425
-
Using the crowd for top-k and group-by queries
-
S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for top-k and group-by queries. ICDT '13, pages 225-236, 2013.
-
(2013)
ICDT '13
, pp. 225-236
-
-
Davidson, S.B.1
Khanna, S.2
Milo, T.3
Roy, S.4
-
16
-
-
79959958767
-
Crowddb: answering queries with crowdsourcing
-
M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries with crowdsourcing. In SIGMOD, 2011.
-
(2011)
SIGMOD
-
-
Franklin, M.J.1
Kossmann, D.2
Kraska, T.3
Ramesh, S.4
Xin, R.5
-
17
-
-
85114064144
-
Finish them!: Pricing Algorithms for Human Computation
-
Technical report, U. Illinois (UIUC)
-
Y. Gao and A. Parameswaran. Finish them!: Pricing Algorithms for Human Computation. Technical report, U. Illinois (UIUC), http://arxiv.org/pdf/1408.6292.pdf, 2014.
-
(2014)
-
-
Gao, Y.1
Parameswaran, A.2
-
18
-
-
79959638956
-
Who moderates the moderators? crowdsourcing abuse detection in user-generated content
-
A. Ghosh, S. Kale, and P. McAfee. Who moderates the moderators? crowdsourcing abuse detection in user-generated content. In EC, pages 167-176, 2011.
-
(2011)
EC
, pp. 167-176
-
-
Ghosh, A.1
Kale, S.2
McAfee, P.3
-
19
-
-
85162363474
-
Crowdclustering
-
R. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering. In NIPS, pages 558-566, 2011.
-
(2011)
NIPS
, pp. 558-566
-
-
Gomes, R.1
Welinder, P.2
Krause, A.3
Perona, P.4
-
23
-
-
84899442104
-
Combining human and machine intelligence in large-scale crowdsourcing
-
E. Kamar, S. Hacker, and E. Horvitz. Combining human and machine intelligence in large-scale crowdsourcing. In AAMAS, pages 467-474, 2012.
-
(2012)
AAMAS
, pp. 467-474
-
-
Kamar, E.1
Hacker, S.2
Horvitz, E.3
-
24
-
-
84880241088
-
Effcient crowdsourcing for multi-class labeling
-
D. Karger, S. Oh, and D. Shah. Effcient crowdsourcing for multi-class labeling. In SIGMETRICS, pages 81-92, 2013.
-
(2013)
SIGMETRICS
, pp. 81-92
-
-
Karger, D.1
Oh, S.2
Shah, D.3
-
25
-
-
84865040057
-
Budget-optimal task allocation for reliable crowdsourcing systems
-
abs/1110.3564
-
D. R. Karger, S. Oh, and D. Shah. Budget-optimal task allocation for reliable crowdsourcing systems. CoRR, abs/1110.3564, 2011.
-
(2011)
CoRR
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
26
-
-
84882621746
-
Crowdsourcing control: Moving beyond multiple choice
-
C. H. Lin, Mausam, and D. S. Weld. Crowdsourcing control: Moving beyond multiple choice. In UAI, pages 491-500, 2012.
-
(2012)
UAI
, pp. 491-500
-
-
Lin Mausam, C.H.1
Weld, D.S.2
-
27
-
-
84875758376
-
Dynamically switching between synergistic workflows for crowdsourcing
-
C. H. Lin, Mausam, and D. S. Weld. Dynamically switching between synergistic workflows for crowdsourcing. In AAAI, 2012.
-
(2012)
AAAI
-
-
Lin Mausam, C.H.1
Weld, D.S.2
-
28
-
-
84877752474
-
Variational inference for crowdsourcing
-
Q. Liu, J. Peng, and A. Ihler. Variational inference for crowdsourcing. In NIPS, pages 701-709, 2012.
-
(2012)
NIPS
, pp. 701-709
-
-
Liu, Q.1
Peng, J.2
Ihler, A.3
-
29
-
-
84873191280
-
Cdas: a crowdsourcing data analytics system
-
June
-
X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: a crowdsourcing data analytics system. Proc. VLDB Endow., 5(10):1040-1051, June 2012.
-
(2012)
Proc. VLDB Endow.
, vol.5
, Issue.10
, pp. 1040-1051
-
-
Liu, X.1
Lu, M.2
Ooi, B.C.3
Shen, Y.4
Wu, S.5
Zhang, M.6
-
30
-
-
84871049467
-
Human-powered sorts and joins
-
A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-powered sorts and joins. In VLDB, 2012.
-
(2012)
VLDB
-
-
Marcus, A.1
Wu, E.2
Karger, D.3
Madden, S.4
Miller, R.5
-
31
-
-
21344451115
-
Estimating the parameters of a nonhomogeneous poisson process with linear rate
-
W. A. Massey, G. A. Parker, and W. Whitt. Estimating the parameters of a nonhomogeneous poisson process with linear rate. Telecommunication Systems, 5(2):361-388, 1996.
-
(1996)
Telecommunication Systems
, vol.5
, Issue.2
, pp. 361-388
-
-
Massey, W.A.1
Parker, G.A.2
Whitt, W.3
-
32
-
-
0002297105
-
Conditional logit analysis of qualitative choice behavior
-
D. McFadden. Conditional logit analysis of qualitative choice behavior. 1973.
-
(1973)
-
-
McFadden, D.1
-
33
-
-
85076285223
-
Re: Captchas-understanding captcha-solving services in an economic context
-
M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and S. Savage. Re: Captchas-understanding captcha-solving services in an economic context. In USENIX Security Symposium, pages 435-462, 2010.
-
(2010)
USENIX Security Symposium
, pp. 435-462
-
-
Motoyama, M.1
Levchenko, K.2
Kanich, C.3
McCoy, D.4
Voelker, G.M.5
Savage, S.6
-
34
-
-
70350681833
-
Efficiently learning the accuracy of labeling sources for selective sampling
-
P. Donmez et al. Efficiently learning the accuracy of labeling sources for selective sampling. In KDD, pages 259-268, 2009.
-
(2009)
KDD
, pp. 259-268
-
-
Donmez, P.1
-
35
-
-
84938134337
-
Optimal Crowd-Powered Rating and Filtering Algorithms
-
Technical report, Stanford University
-
A. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta, N. Polyzotis, and J. Widom. Optimal Crowd-Powered Rating and Filtering Algorithms. Technical report, Stanford University, 4.
-
-
-
Parameswaran, A.1
Boyd, S.2
Garcia-Molina, H.3
Gupta, A.4
Polyzotis, N.5
Widom, J.6
-
36
-
-
84862645517
-
CrowdScreen: algorithms for filtering data with humans
-
A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and J. Widom. CrowdScreen: algorithms for filtering data with humans. In SIGMOD Conference, pages 361-372, 2012.
-
(2012)
SIGMOD Conference
, pp. 361-372
-
-
Parameswaran, A.1
Garcia-Molina, H.2
Park, H.3
Polyzotis, N.4
Ramesh, A.5
Widom, J.6
-
37
-
-
84871076960
-
Deco: declarative crowdsourcing
-
A. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. Widom. Deco: declarative crowdsourcing. In CIKM, pages 1203-1212, 2012.
-
(2012)
CIKM
, pp. 1203-1212
-
-
Parameswaran, A.1
Park, H.2
Garcia-Molina, H.3
Polyzotis, N.4
Widom, J.5
-
38
-
-
79955561017
-
Answering Queries using Humans, Algorithms and Databases
-
A. Parameswaran and N. Polyzotis. Answering Queries using Humans, Algorithms and Databases. In CIDR, pages 160-166, 2011.
-
(2011)
CIDR
, pp. 160-166
-
-
Parameswaran, A.1
Polyzotis, N.2
-
39
-
-
79960245747
-
Human-assisted graph search: it's okay to ask questions
-
A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis, and J. Widom. Human-assisted graph search: it's okay to ask questions. PVLDB, 4(5):267-278, 2011.
-
(2011)
PVLDB
, vol.4
, Issue.5
, pp. 267-278
-
-
Parameswaran, A.1
Sarma, A.D.2
Garcia-Molina, H.3
Polyzotis, N.4
Widom, J.5
-
40
-
-
80053360508
-
Cheap and fast-but is it good? evaluating non-expert annotations for natural language tasks
-
R. Snow et al. Cheap and fast-but is it good? evaluating non-expert annotations for natural language tasks. In EMNLP, pages 254-263, 2008.
-
(2008)
EMNLP
, pp. 254-263
-
-
Snow, R.1
-
41
-
-
84880549308
-
Identifying reliable workers swiftly
-
Technical report, Stanford University, September
-
A. Ramesh, A. Parameswaran, H. Garcia-Molina, and N. Polyzotis. Identifying reliable workers swiftly. Technical report, Stanford University, September 2012.
-
(2012)
-
-
Ramesh, A.1
Parameswaran, A.2
Garcia-Molina, H.3
Polyzotis, N.4
-
42
-
-
84857856268
-
Eliminating spammers and ranking annotators for crowdsourced labeling tasks
-
V. C. Raykar and S. Yu. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. Journal of Machine Learning Research, 13:491-518, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 491-518
-
-
Raykar, V.C.1
Yu, S.2
-
44
-
-
85028491567
-
Supervised learning from multiple experts: whom to trust when everyone lies a bit
-
V. C. Raykar et al. Supervised learning from multiple experts: whom to trust when everyone lies a bit. In ICML, page 112, 2009.
-
(2009)
ICML
, pp. 112
-
-
Raykar, V.C.1
-
45
-
-
65449144451
-
Get another label? improving data quality and data mining using multiple, noisy labelers
-
V. S. Sheng et al. Get another label? improving data quality and data mining using multiple, noisy labelers. In KDD, pages 614-622, 2008.
-
(2008)
KDD
, pp. 614-622
-
-
Sheng, V.S.1
-
46
-
-
84855849323
-
Towards building a high-quality workforce with mechanical turk
-
P. Wais, S. Lingamneni, D. Cook, J. Fennell, B. Goldenberg, D. Lubarov, D. Marin, and H. Simons. Towards building a high-quality workforce with mechanical turk. In Computational Social Science and the Wisdom of Crowds, NIPS Workshop, 2010.
-
(2010)
Computational Social Science and the Wisdom of Crowds, NIPS Workshop
-
-
Wais, P.1
Lingamneni, S.2
Cook, D.3
Fennell, J.4
Goldenberg, B.5
Lubarov, D.6
Marin, D.7
Simons, H.8
-
47
-
-
84872946975
-
Crowder: Crowdsourcing entity resolution
-
J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution. PVLDB, 5(11):1483-1494, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.11
, pp. 1483-1494
-
-
Wang, J.1
Kraska, T.2
Franklin, M.J.3
Feng, J.4
-
48
-
-
77956536129
-
Online crowdsourcing: rating annotators and obtaining cost-effective labels
-
P. Welinder and P. Perona. Online crowdsourcing: rating annotators and obtaining cost-effective labels. In CVPR, 2010.
-
(2010)
CVPR
-
-
Welinder, P.1
Perona, P.2
-
49
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. R. Movellan. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS, pages 2035-2043. 2009.
-
(2009)
NIPS
, pp. 2035-2043
-
-
Whitehill, J.1
Ruvolo, P.2
Wu, T.3
Bergsma, J.4
Movellan, J.R.5
-
50
-
-
80053248048
-
Feasibility of human-in-the-loop minimum error rate training
-
O. Zaidan and C. Callison-Burch. Feasibility of human-in-the-loop minimum error rate training. In EMNLP, pages 52-61, 2009.
-
(2009)
EMNLP
, pp. 52-61
-
-
Zaidan, O.1
Callison-Burch, C.2
|