메뉴 건너뛰기




Volumn 7, Issue 14, 2014, Pages 1965-1976

Finish them!: Pricing algorithms for human computation

Author keywords

[No Author keywords available]

Indexed keywords

BUDGET CONTROL; COMPUTATION THEORY; DECISION THEORY; ECONOMICS; MARKOV PROCESSES;

EID: 84936873985     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/2733085.2733101     Document Type: Conference Paper
Times cited : (53)

References (50)
  • 1
    • 84938134328 scopus 로고    scopus 로고
    • Crowdsourced data analysis with Clockwork Raven
    • Crowdsourced data analysis with Clockwork Raven. https://blog.twitter.com/2012/crowdsourced-data-analysis-with-clockworkraven.
  • 2
    • 84938134329 scopus 로고    scopus 로고
    • Crowdsourcing Insights from eBay, Retrieved 10 January
    • Crowdsourcing Insights from eBay (Retrieved 10 January 2014). http://crowdopolis.info/james-rubinstein.pdf.
    • (2014)
  • 3
    • 84938134330 scopus 로고    scopus 로고
    • Mechanical Turk, Retrieved 22 July
    • Mechanical Turk (Retrieved 22 July 2013). http://www.mturk.com.
    • (2013)
  • 4
    • 84938134331 scopus 로고    scopus 로고
    • Mechanical Turk Tracker, Retrieved 20 February
    • Mechanical Turk Tracker (Retrieved 20 February 2014). http://mturk-tracker.com.
    • (2014)
  • 5
    • 84938134332 scopus 로고    scopus 로고
    • Microsoft Wants to Turn Crowdsourcing from an Art to a Science, Retrieved 10 January
    • Microsoft Wants to Turn Crowdsourcing from an Art to a Science (Retrieved 10 January 2014). http://www.crowdsourcing.org/editorial/microsoft-wants-toturn-crowdsourcing-from-an-art-into-a-science/21233.
    • (2014)
  • 6
    • 84938134333 scopus 로고    scopus 로고
    • Samasource Annual Report, Retrieved 10 January
    • Samasource Annual Report (Retrieved 10 January 2014). http://www.slideshare.net/leila_c/samasource-2011-annual-report.
    • (2014)
  • 7
    • 85028488113 scopus 로고    scopus 로고
    • The Pay? 0 an Hour. The New York Times
    • Translators Wanted at LinkedIn, Retrieved 10 January
    • Translators Wanted at LinkedIn. The Pay? 0 an Hour. The New York Times (Retrieved 10 January 2014). http://www.nytimes.com/2009/06/29/technology/start-ups/29linkedin.html.
    • (2014)
  • 8
    • 65249129950 scopus 로고    scopus 로고
    • Crowdsourcing for relevance evaluation
    • O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance evaluation. SIGIR Forum, 42(2):9-15, 2008.
    • (2008) SIGIR Forum , vol.42 , Issue.2 , pp. 9-15
    • Alonso, O.1    Rose, D.E.2    Stewart, B.3
  • 11
    • 77952254925 scopus 로고    scopus 로고
    • Minimizing database repros using language grammars
    • N. Bruno. Minimizing database repros using language grammars. In EDBT, pages 382-393, 2010.
    • (2010) EDBT , pp. 382-393
    • Bruno, N.1
  • 12
    • 79960210896 scopus 로고    scopus 로고
    • Decision-theoretic control of crowd-sourced workflows
    • P. Dai, Mausam, and D. S. Weld. Decision-theoretic control of crowd-sourced workflows. In AAAI, 2010.
    • (2010) AAAI
    • Dai Mausam, P.1    Weld, D.S.2
  • 13
    • 84893096721 scopus 로고    scopus 로고
    • Aggregating crowdsourced binary ratings
    • N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi. Aggregating crowdsourced binary ratings. In WWW, pages 285-294, 2013.
    • (2013) WWW , pp. 285-294
    • Dalvi, N.1    Dasgupta, A.2    Kumar, R.3    Rastogi, V.4
  • 14
    • 84875617425 scopus 로고    scopus 로고
    • Using the crowd for top-k and group-by queries
    • S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for top-k and group-by queries. ICDT '13, pages 225-236, 2013.
    • (2013) ICDT '13 , pp. 225-236
    • Davidson, S.B.1    Khanna, S.2    Milo, T.3    Roy, S.4
  • 17
    • 85114064144 scopus 로고    scopus 로고
    • Finish them!: Pricing Algorithms for Human Computation
    • Technical report, U. Illinois (UIUC)
    • Y. Gao and A. Parameswaran. Finish them!: Pricing Algorithms for Human Computation. Technical report, U. Illinois (UIUC), http://arxiv.org/pdf/1408.6292.pdf, 2014.
    • (2014)
    • Gao, Y.1    Parameswaran, A.2
  • 18
    • 79959638956 scopus 로고    scopus 로고
    • Who moderates the moderators? crowdsourcing abuse detection in user-generated content
    • A. Ghosh, S. Kale, and P. McAfee. Who moderates the moderators? crowdsourcing abuse detection in user-generated content. In EC, pages 167-176, 2011.
    • (2011) EC , pp. 167-176
    • Ghosh, A.1    Kale, S.2    McAfee, P.3
  • 23
    • 84899442104 scopus 로고    scopus 로고
    • Combining human and machine intelligence in large-scale crowdsourcing
    • E. Kamar, S. Hacker, and E. Horvitz. Combining human and machine intelligence in large-scale crowdsourcing. In AAMAS, pages 467-474, 2012.
    • (2012) AAMAS , pp. 467-474
    • Kamar, E.1    Hacker, S.2    Horvitz, E.3
  • 24
    • 84880241088 scopus 로고    scopus 로고
    • Effcient crowdsourcing for multi-class labeling
    • D. Karger, S. Oh, and D. Shah. Effcient crowdsourcing for multi-class labeling. In SIGMETRICS, pages 81-92, 2013.
    • (2013) SIGMETRICS , pp. 81-92
    • Karger, D.1    Oh, S.2    Shah, D.3
  • 25
    • 84865040057 scopus 로고    scopus 로고
    • Budget-optimal task allocation for reliable crowdsourcing systems
    • abs/1110.3564
    • D. R. Karger, S. Oh, and D. Shah. Budget-optimal task allocation for reliable crowdsourcing systems. CoRR, abs/1110.3564, 2011.
    • (2011) CoRR
    • Karger, D.R.1    Oh, S.2    Shah, D.3
  • 26
    • 84882621746 scopus 로고    scopus 로고
    • Crowdsourcing control: Moving beyond multiple choice
    • C. H. Lin, Mausam, and D. S. Weld. Crowdsourcing control: Moving beyond multiple choice. In UAI, pages 491-500, 2012.
    • (2012) UAI , pp. 491-500
    • Lin Mausam, C.H.1    Weld, D.S.2
  • 27
    • 84875758376 scopus 로고    scopus 로고
    • Dynamically switching between synergistic workflows for crowdsourcing
    • C. H. Lin, Mausam, and D. S. Weld. Dynamically switching between synergistic workflows for crowdsourcing. In AAAI, 2012.
    • (2012) AAAI
    • Lin Mausam, C.H.1    Weld, D.S.2
  • 28
    • 84877752474 scopus 로고    scopus 로고
    • Variational inference for crowdsourcing
    • Q. Liu, J. Peng, and A. Ihler. Variational inference for crowdsourcing. In NIPS, pages 701-709, 2012.
    • (2012) NIPS , pp. 701-709
    • Liu, Q.1    Peng, J.2    Ihler, A.3
  • 29
    • 84873191280 scopus 로고    scopus 로고
    • Cdas: a crowdsourcing data analytics system
    • June
    • X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: a crowdsourcing data analytics system. Proc. VLDB Endow., 5(10):1040-1051, June 2012.
    • (2012) Proc. VLDB Endow. , vol.5 , Issue.10 , pp. 1040-1051
    • Liu, X.1    Lu, M.2    Ooi, B.C.3    Shen, Y.4    Wu, S.5    Zhang, M.6
  • 31
    • 21344451115 scopus 로고    scopus 로고
    • Estimating the parameters of a nonhomogeneous poisson process with linear rate
    • W. A. Massey, G. A. Parker, and W. Whitt. Estimating the parameters of a nonhomogeneous poisson process with linear rate. Telecommunication Systems, 5(2):361-388, 1996.
    • (1996) Telecommunication Systems , vol.5 , Issue.2 , pp. 361-388
    • Massey, W.A.1    Parker, G.A.2    Whitt, W.3
  • 32
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behavior
    • D. McFadden. Conditional logit analysis of qualitative choice behavior. 1973.
    • (1973)
    • McFadden, D.1
  • 34
    • 70350681833 scopus 로고    scopus 로고
    • Efficiently learning the accuracy of labeling sources for selective sampling
    • P. Donmez et al. Efficiently learning the accuracy of labeling sources for selective sampling. In KDD, pages 259-268, 2009.
    • (2009) KDD , pp. 259-268
    • Donmez, P.1
  • 35
  • 38
    • 79955561017 scopus 로고    scopus 로고
    • Answering Queries using Humans, Algorithms and Databases
    • A. Parameswaran and N. Polyzotis. Answering Queries using Humans, Algorithms and Databases. In CIDR, pages 160-166, 2011.
    • (2011) CIDR , pp. 160-166
    • Parameswaran, A.1    Polyzotis, N.2
  • 40
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast-but is it good? evaluating non-expert annotations for natural language tasks
    • R. Snow et al. Cheap and fast-but is it good? evaluating non-expert annotations for natural language tasks. In EMNLP, pages 254-263, 2008.
    • (2008) EMNLP , pp. 254-263
    • Snow, R.1
  • 41
    • 84880549308 scopus 로고    scopus 로고
    • Identifying reliable workers swiftly
    • Technical report, Stanford University, September
    • A. Ramesh, A. Parameswaran, H. Garcia-Molina, and N. Polyzotis. Identifying reliable workers swiftly. Technical report, Stanford University, September 2012.
    • (2012)
    • Ramesh, A.1    Parameswaran, A.2    Garcia-Molina, H.3    Polyzotis, N.4
  • 42
    • 84857856268 scopus 로고    scopus 로고
    • Eliminating spammers and ranking annotators for crowdsourced labeling tasks
    • V. C. Raykar and S. Yu. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. Journal of Machine Learning Research, 13:491-518, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 491-518
    • Raykar, V.C.1    Yu, S.2
  • 44
    • 85028491567 scopus 로고    scopus 로고
    • Supervised learning from multiple experts: whom to trust when everyone lies a bit
    • V. C. Raykar et al. Supervised learning from multiple experts: whom to trust when everyone lies a bit. In ICML, page 112, 2009.
    • (2009) ICML , pp. 112
    • Raykar, V.C.1
  • 45
    • 65449144451 scopus 로고    scopus 로고
    • Get another label? improving data quality and data mining using multiple, noisy labelers
    • V. S. Sheng et al. Get another label? improving data quality and data mining using multiple, noisy labelers. In KDD, pages 614-622, 2008.
    • (2008) KDD , pp. 614-622
    • Sheng, V.S.1
  • 47
    • 84872946975 scopus 로고    scopus 로고
    • Crowder: Crowdsourcing entity resolution
    • J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution. PVLDB, 5(11):1483-1494, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1483-1494
    • Wang, J.1    Kraska, T.2    Franklin, M.J.3    Feng, J.4
  • 48
    • 77956536129 scopus 로고    scopus 로고
    • Online crowdsourcing: rating annotators and obtaining cost-effective labels
    • P. Welinder and P. Perona. Online crowdsourcing: rating annotators and obtaining cost-effective labels. In CVPR, 2010.
    • (2010) CVPR
    • Welinder, P.1    Perona, P.2
  • 49
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
    • J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. R. Movellan. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS, pages 2035-2043. 2009.
    • (2009) NIPS , pp. 2035-2043
    • Whitehill, J.1    Ruvolo, P.2    Wu, T.3    Bergsma, J.4    Movellan, J.R.5
  • 50
    • 80053248048 scopus 로고    scopus 로고
    • Feasibility of human-in-the-loop minimum error rate training
    • O. Zaidan and C. Callison-Burch. Feasibility of human-in-the-loop minimum error rate training. In EMNLP, pages 52-61, 2009.
    • (2009) EMNLP , pp. 52-61
    • Zaidan, O.1    Callison-Burch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.