메뉴 건너뛰기




Volumn 581, Issue 5, 2007, Pages 826-830

VPMCD: Variable interaction modeling approach for class discrimination in biological systems

Author keywords

Computational biology; Data classification; Discriminant analysis; Machine learning; Multivariate statistics; Variable predictive models

Indexed keywords

ALGORITHM; ARTICLE; DATA ANALYSIS; DECISION MAKING; DISCRIMINANT ANALYSIS; MATHEMATICAL COMPUTING; PRIORITY JOURNAL; STATISTICAL ANALYSIS; STATISTICAL MODEL; VARIABLE PREDICTIVE MODEL BASED CLASS DISCRIMINATION;

EID: 33847147151     PISSN: 00145793     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.febslet.2007.01.052     Document Type: Article
Times cited : (38)

References (20)
  • 6
    • 33748415440 scopus 로고    scopus 로고
    • Prediction of structural classes for protein sequences and domains - Impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy
    • Kurgan L.A., and Homaeian L. Prediction of structural classes for protein sequences and domains - Impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy. Pattern Recog. 39 (2006) 2323-2343
    • (2006) Pattern Recog. , vol.39 , pp. 2323-2343
    • Kurgan, L.A.1    Homaeian, L.2
  • 9
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data
    • Peng Y. A novel ensemble machine learning for robust microarray data. Comput. Biol. Med. 36 (2006) 553-573
    • (2006) Comput. Biol. Med. , vol.36 , pp. 553-573
    • Peng, Y.1
  • 10
    • 14744274588 scopus 로고    scopus 로고
    • Using uncorrelated discriminant analysis for tissue classification with gene expression data
    • Ye J., Li T., Xiong T., and Janardan R. Using uncorrelated discriminant analysis for tissue classification with gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 1 4 (2004) 181-190
    • (2004) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.1 , Issue.4 , pp. 181-190
    • Ye, J.1    Li, T.2    Xiong, T.3    Janardan, R.4
  • 11
    • 27544451127 scopus 로고    scopus 로고
    • Simple decision rules for classifying human cancers from gene expression profiles
    • Tan A.C., Naiman D.Q., Xu L., Winslow R.L., and Geman D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21 20 (2005) 3896-3904
    • (2005) Bioinformatics , vol.21 , Issue.20 , pp. 3896-3904
    • Tan, A.C.1    Naiman, D.Q.2    Xu, L.3    Winslow, R.L.4    Geman, D.5
  • 13
  • 15
    • 34250876252 scopus 로고    scopus 로고
    • Su, C.Y., Lo, A., Chiu, H.S., Sung, T.Y. and Hsu, W.L. (2006) Protein subcellular localization prediction based on compartment specific biological features, in: Proceedings of IEEE CSB2006 Computational Systems Bioinformatics Conference.
  • 16
    • 33847110559 scopus 로고    scopus 로고
    • MATLAB 7.0.4 Release 14 (2005) The MathWorks Inc., Natick, MA.
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., and Barnhill S. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 18
    • 1542268315 scopus 로고    scopus 로고
    • Multi-class cancer subtype classification based on gene expression signatures with reliability analysis
    • Fua L.M., and Fu-Liu C.S. Multi-class cancer subtype classification based on gene expression signatures with reliability analysis. FEBS Lett. 561 (2004) 186-190
    • (2004) FEBS Lett. , vol.561 , pp. 186-190
    • Fua, L.M.1    Fu-Liu, C.S.2
  • 19
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein sub cellular localization prediction
    • Hua S., and Sun Z. Support vector machine approach for protein sub cellular localization prediction. Bioinformatics 17 (2001) 721-728
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.