-
1
-
-
57149111944
-
Navajo microvillous inclusion disease is due to a mutation in MYO5B
-
Erickson R.P., Larson-Thome K., Valenzuela R.K., et al. Navajo microvillous inclusion disease is due to a mutation in MYO5B. Am J Med Genet A 2008, 146A:3117-3119.
-
(2008)
Am J Med Genet A
, vol.146A
, pp. 3117-3119
-
-
Erickson, R.P.1
Larson-Thome, K.2
Valenzuela, R.K.3
-
2
-
-
52949112224
-
MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity
-
Muller T., Hess M.W., Schiefermeier N., et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet 2008, 40:1163-1165.
-
(2008)
Nat Genet
, vol.40
, pp. 1163-1165
-
-
Muller, T.1
Hess, M.W.2
Schiefermeier, N.3
-
3
-
-
77951857203
-
Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model
-
Ruemmele F.M., Muller T., Schiefermeier N., et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum Mutat 2010, 31:544-551.
-
(2010)
Hum Mutat
, vol.31
, pp. 544-551
-
-
Ruemmele, F.M.1
Muller, T.2
Schiefermeier, N.3
-
4
-
-
0018178824
-
Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy
-
Davidson G.P., Cutz E., Hamilton J.R., et al. Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 1978, 75:783-790.
-
(1978)
Gastroenterology
, vol.75
, pp. 783-790
-
-
Davidson, G.P.1
Cutz, E.2
Hamilton, J.R.3
-
6
-
-
0033754550
-
Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium
-
Ameen N.A., Salas P.J. Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium. Traffic 2000, 1:76-83.
-
(2000)
Traffic
, vol.1
, pp. 76-83
-
-
Ameen, N.A.1
Salas, P.J.2
-
7
-
-
84922394222
-
Myosin 5b loss of function leads to defects in polarized signalling: implication for microvillus inclusion disease pathogenesis and treatment
-
Kravtsov D., Mashukova A., Forteza R., et al. Myosin 5b loss of function leads to defects in polarized signalling: implication for microvillus inclusion disease pathogenesis and treatment. Am J Physiol Gastrointest Liver Physiol 2014, 307:G992-G1001.
-
(2014)
Am J Physiol Gastrointest Liver Physiol
, vol.307
, pp. G992-G1001
-
-
Kravtsov, D.1
Mashukova, A.2
Forteza, R.3
-
8
-
-
84889575311
-
Microvillus inclusion disease: loss of myosin Vb disrupts intracellular traffic and cell polarity
-
Thoeni C.E., Vogel G.F., Tancevski I., et al. Microvillus inclusion disease: loss of myosin Vb disrupts intracellular traffic and cell polarity. Traffic 2013, 15:22-42.
-
(2013)
Traffic
, vol.15
, pp. 22-42
-
-
Thoeni, C.E.1
Vogel, G.F.2
Tancevski, I.3
-
9
-
-
84902992066
-
Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease
-
Knowles B.C., Roland J.T., Krishnan M., et al. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J Clin Invest 2014, 124:2947-2962.
-
(2014)
J Clin Invest
, vol.124
, pp. 2947-2962
-
-
Knowles, B.C.1
Roland, J.T.2
Krishnan, M.3
-
10
-
-
84937917079
-
Myo5b knockout mice as a model of microvillus inclusion disease
-
Carton-Garcia F., Overeem A.W., Nieto R., et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci Rep 2015, 5:12312.
-
(2015)
Sci Rep
, vol.5
, pp. 12312
-
-
Carton-Garcia, F.1
Overeem, A.W.2
Nieto, R.3
-
11
-
-
84943370122
-
An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking
-
Schneeberger K., Vogel G.F., Teunissen H., et al. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking. Proc Natl Acad Sci U S A 2015, 112:12408-12413.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 12408-12413
-
-
Schneeberger, K.1
Vogel, G.F.2
Teunissen, H.3
-
12
-
-
84862517552
-
Phosphorylation of Rab11-FIP2 regulates polarity in MDCK cells
-
Lapierre L.A., Avant K.M., Caldwell C.M., et al. Phosphorylation of Rab11-FIP2 regulates polarity in MDCK cells. Mol Biol Cell 2012, 23:2302-2318.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 2302-2318
-
-
Lapierre, L.A.1
Avant, K.M.2
Caldwell, C.M.3
-
13
-
-
34547810829
-
Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3
-
Roland J.T., Kenworthy A.K., Peranen J., et al. Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3. Mol Biol Cell 2007, 18:2828-2837.
-
(2007)
Mol Biol Cell
, vol.18
, pp. 2828-2837
-
-
Roland, J.T.1
Kenworthy, A.K.2
Peranen, J.3
-
14
-
-
84896892290
-
Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes
-
Dhekne H.S., Hsiao N.H., Roelofs P., et al. Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes. J Cell Sci 2014, 127:1007-1017.
-
(2014)
J Cell Sci
, vol.127
, pp. 1007-1017
-
-
Dhekne, H.S.1
Hsiao, N.H.2
Roelofs, P.3
-
15
-
-
2942622503
-
Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine
-
Saotome I., Curto M., McClatchey A.I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 2004, 6:855-864.
-
(2004)
Dev Cell
, vol.6
, pp. 855-864
-
-
Saotome, I.1
Curto, M.2
McClatchey, A.I.3
-
16
-
-
0036301282
-
CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy)
-
Groisman G.M., Amar M., Livne E. CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am J Surg Pathol 2002, 26:902-907.
-
(2002)
Am J Surg Pathol
, vol.26
, pp. 902-907
-
-
Groisman, G.M.1
Amar, M.2
Livne, E.3
-
17
-
-
84928546261
-
Rab11a regulates syntaxin 3 localization and microvillus assembly in enterocytes
-
Knowles B.C., Weis V.G., Yu S., et al. Rab11a regulates syntaxin 3 localization and microvillus assembly in enterocytes. J Cell Sci 2015, 128:1617-1626.
-
(2015)
J Cell Sci
, vol.128
, pp. 1617-1626
-
-
Knowles, B.C.1
Weis, V.G.2
Yu, S.3
-
18
-
-
84979763374
-
Rab11a is required for apical protein localisation in the intestine
-
Sobajima T., Yoshimura S., Iwano T., et al. Rab11a is required for apical protein localisation in the intestine. Biol Open 2014, 4:86-94.
-
(2014)
Biol Open
, vol.4
, pp. 86-94
-
-
Sobajima, T.1
Yoshimura, S.2
Iwano, T.3
-
19
-
-
0015421358
-
The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat
-
Jones E.A., Waldmann T.A. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 1972, 51:2916-2927.
-
(1972)
J Clin Invest
, vol.51
, pp. 2916-2927
-
-
Jones, E.A.1
Waldmann, T.A.2
-
20
-
-
0030880901
-
Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells
-
Israel E.J., Taylor S., Wu Z., et al. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 1997, 92:69-74.
-
(1997)
Immunology
, vol.92
, pp. 69-74
-
-
Israel, E.J.1
Taylor, S.2
Wu, Z.3
-
21
-
-
0024529856
-
An Fc receptor structurally related to MHC class I antigens
-
Simister N.E., Mostov K.E. An Fc receptor structurally related to MHC class I antigens. Nature 1989, 337:184-187.
-
(1989)
Nature
, vol.337
, pp. 184-187
-
-
Simister, N.E.1
Mostov, K.E.2
-
22
-
-
0028135495
-
Paneth cell differentiation in the developing intestine of normal and transgenic mice
-
Bry L., Falk P., Huttner K., et al. Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc Natl Acad Sci U S A 1994, 91:10335-10339.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 10335-10339
-
-
Bry, L.1
Falk, P.2
Huttner, K.3
-
23
-
-
0037317875
-
Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine
-
Shah U., Dickinson B.L., Blumberg R.S., et al. Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr Res 2003, 53:295-301.
-
(2003)
Pediatr Res
, vol.53
, pp. 295-301
-
-
Shah, U.1
Dickinson, B.L.2
Blumberg, R.S.3
-
24
-
-
0015877138
-
Intestinal transport of antibodies in the newborn rat
-
Rodewald R. Intestinal transport of antibodies in the newborn rat. J Cell Biol 1973, 58:189-211.
-
(1973)
J Cell Biol
, vol.58
, pp. 189-211
-
-
Rodewald, R.1
-
25
-
-
52949110519
-
FcRn-mediated antibody transport across epithelial cells revealed by electron tomography
-
He W., Ladinsky M.S., Huey-Tubman K.E., et al. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 2008, 455:542-546.
-
(2008)
Nature
, vol.455
, pp. 542-546
-
-
He, W.1
Ladinsky, M.S.2
Huey-Tubman, K.E.3
-
26
-
-
70649111219
-
Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells
-
Sato K., Nagai J., Mitsui N., et al. Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells. Life Sci 2009, 85:800-807.
-
(2009)
Life Sci
, vol.85
, pp. 800-807
-
-
Sato, K.1
Nagai, J.2
Mitsui, N.3
-
27
-
-
84975193726
-
Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3
-
Vogel G.F., Klee K.M., Janecke A.R., et al. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J Cell Biol 2015, 211:587-604.
-
(2015)
J Cell Biol
, vol.211
, pp. 587-604
-
-
Vogel, G.F.1
Klee, K.M.2
Janecke, A.R.3
-
28
-
-
0021815019
-
Congenital microvillous atrophy: specific diagnostic features
-
Phillips A.D., Jenkins P., Raafat F., et al. Congenital microvillous atrophy: specific diagnostic features. Arch Dis Child 1985, 60:135-140.
-
(1985)
Arch Dis Child
, vol.60
, pp. 135-140
-
-
Phillips, A.D.1
Jenkins, P.2
Raafat, F.3
-
29
-
-
0023925133
-
Single-villus analysis of disaccharidase expression by different regions of the mouse intestine
-
James P.S., Smith M.W., Tivey D.R. Single-villus analysis of disaccharidase expression by different regions of the mouse intestine. J Physiol 1988, 401:533-545.
-
(1988)
J Physiol
, vol.401
, pp. 533-545
-
-
James, P.S.1
Smith, M.W.2
Tivey, D.R.3
-
30
-
-
0014056194
-
Structural and functional changes following small intestinal resection in the rat
-
Dowling R.H., Booth C.C. Structural and functional changes following small intestinal resection in the rat. Clin Sci 1967, 32:139-149.
-
(1967)
Clin Sci
, vol.32
, pp. 139-149
-
-
Dowling, R.H.1
Booth, C.C.2
-
31
-
-
32144445923
-
Mechanisms of enteral nutrient-enhanced intestinal adaptation
-
Tappenden K.A. Mechanisms of enteral nutrient-enhanced intestinal adaptation. Gastroenterology 2006, 130:S93-S99.
-
(2006)
Gastroenterology
, vol.130
, pp. S93-S99
-
-
Tappenden, K.A.1
-
32
-
-
34247532276
-
Impact of caloric intake on parenteral nutrition-associated intestinal morphology and mucosal barrier function
-
Sun X., Spencer A.U., Yang H., et al. Impact of caloric intake on parenteral nutrition-associated intestinal morphology and mucosal barrier function. JPEN J Parenter Enteral Nutr 2006, 30:474-479.
-
(2006)
JPEN J Parenter Enteral Nutr
, vol.30
, pp. 474-479
-
-
Sun, X.1
Spencer, A.U.2
Yang, H.3
-
33
-
-
0033664449
-
Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats
-
Sakamoto K., Hirose H., Onizuka A., et al. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J Surg Res 2000, 94:99-106.
-
(2000)
J Surg Res
, vol.94
, pp. 99-106
-
-
Sakamoto, K.1
Hirose, H.2
Onizuka, A.3
-
34
-
-
0028826638
-
Parenteral nutrition is associated with intestinal morphologic and functional changes in humans
-
Buchman A.L., Moukarzel A.A., Bhuta S., et al. Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. JPEN J Parenter Enteral Nutr 1995, 19:453-460.
-
(1995)
JPEN J Parenter Enteral Nutr
, vol.19
, pp. 453-460
-
-
Buchman, A.L.1
Moukarzel, A.A.2
Bhuta, S.3
-
35
-
-
59649128714
-
Dissociation of E-cadherin and beta-catenin in a mouse model of total parenteral nutrition: a mechanism for the loss of epithelial cell proliferation and villus atrophy
-
Feng Y., Sun X., Yang H., et al. Dissociation of E-cadherin and beta-catenin in a mouse model of total parenteral nutrition: a mechanism for the loss of epithelial cell proliferation and villus atrophy. J Physiol 2009, 587:641-654.
-
(2009)
J Physiol
, vol.587
, pp. 641-654
-
-
Feng, Y.1
Sun, X.2
Yang, H.3
-
36
-
-
84903174800
-
MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease
-
Girard M., Lacaille F., Verkarre V., et al. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2014, 60:301-310.
-
(2014)
Hepatology
, vol.60
, pp. 301-310
-
-
Girard, M.1
Lacaille, F.2
Verkarre, V.3
-
37
-
-
27244439821
-
Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells
-
Wakabayashi Y., Dutt P., Lippincott-Schwartz J., et al. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc Natl Acad Sci U S A 2005, 102:15087-15092.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 15087-15092
-
-
Wakabayashi, Y.1
Dutt, P.2
Lippincott-Schwartz, J.3
|