메뉴 건너뛰기




Volumn 2015-November, Issue , 2015, Pages

Performance evaluation of SVM and iterative FSVM classifiers with bootstrapping-based over-sampling and under-sampling

Author keywords

fuzzy support vector machines; imbalanced data; over sampling; support vectro machines; under sampling

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATIONAL COMPLEXITY; FUZZY SYSTEMS; ITERATIVE METHODS; LEARNING SYSTEMS; VECTORS;

EID: 84975748741     PISSN: 10987584     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZ-IEEE.2015.7337850     Document Type: Conference Paper
Times cited : (6)

References (26)
  • 1
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machinecondition monitoring and fault diagnosis
    • A. Widodo and B.-S. Yang, "Support vector machine in machinecondition monitoring and fault diagnosis, " Mech. Syst. SignalProcess., vol. 21, pp. 2560-2574, 2007.
    • (2007) Mech. Syst. SignalProcess. , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2
  • 4
    • 77953089698 scopus 로고    scopus 로고
    • FSVM-cil: Fuzzy support vectormachines for class imbalance learning
    • Jun.
    • R. Batuwita and V. Palade, "FSVM-CIL: Fuzzy Support VectorMachines for Class Imbalance Learning, " IEEE Trans. Fuzzy Syst., vol. 18, no. 3, pp. 558-571, Jun. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.3 , pp. 558-571
    • Batuwita, R.1    Palade, V.2
  • 5
    • 84900803418 scopus 로고    scopus 로고
    • An efficient weighted Lagrangian twin support vector machine forimbalanced data classification
    • Y. H. Shao, W. J. Chen, J. J. Zhang, Z. Wang, and N. Y. Deng, "An efficient weighted Lagrangian twin support vector machine forimbalanced data classification, " Pattern Recognit., vol. 47, pp. 3158-3167, 2014.
    • (2014) Pattern Recognit. , vol.47 , pp. 3158-3167
    • Shao, Y.H.1    Chen, W.J.2    Zhang, J.J.3    Wang, Z.4    Deng, N.Y.5
  • 6
    • 84900803418 scopus 로고    scopus 로고
    • An efficient weighted Lagrangian twin support vector machine forimbalanced data classification
    • Y. H. Shao, W. J. Chen, J. J. Zhang, Z. Wang, and N. Y. Deng, "An efficient weighted Lagrangian twin support vector machine forimbalanced data classification, " Pattern Recognit., vol. 47, pp. 3158-3167, 2014.
    • (2014) Pattern Recognit. , vol.47 , pp. 3158-3167
    • Shao, Y.H.1    Chen, W.J.2    Zhang, J.J.3    Wang, Z.4    Deng, N.Y.5
  • 7
    • 0036505650 scopus 로고    scopus 로고
    • Fuzzy support vector machines
    • Jan.
    • C.-F. Lin and S.-D. Wang, "Fuzzy Support Vector Machines., "IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 464-71, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 464-471
    • Lin, C.-F.1    Wang, S.-D.2
  • 8
    • 4644290661 scopus 로고    scopus 로고
    • Training algorithms for fuzzy support vectormachines with noisy data
    • Oct.
    • C. Lin and S. Wang, "Training algorithms for fuzzy support vectormachines with noisy data, " Pattern Recognit. Lett., vol. 25, no. 14, pp. 1647-1656, Oct. 2004.
    • (2004) Pattern Recognit. Lett. , vol.25 , Issue.14 , pp. 1647-1656
    • Lin, C.1    Wang, S.2
  • 11
    • 80053062615 scopus 로고    scopus 로고
    • Adaptive neural-fuzzy inference system forclassification of rail quality data with bootstrapping-based oversampling
    • Jun.
    • Y. Y. Yang, M. Mahfouf, G. Panoutsos, Q. Zhang, and S. Thornton, "Adaptive neural-fuzzy inference system forclassification of rail quality data with bootstrapping-based oversampling, "IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE 2011), pp. 2205-2212, Jun. 2011.
    • (2011) IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE 2011) , pp. 2205-2212
    • Yang, Y.Y.1    Mahfouf, M.2    Panoutsos, G.3    Zhang, Q.4    Thornton, S.5
  • 13
    • 63449090301 scopus 로고    scopus 로고
    • Learning on the Border-: Active Learning inImbalanced Data Classification
    • C. L. Giles, "Learning on the Border-: Active Learning inImbalanced Data Classification, " in 16th ACM conf. Informationand Knowledge Management, 2007, pp. 127-136.
    • (2007) 16th ACM Conf. Informationand Knowledge Management , pp. 127-136
    • Giles, C.L.1
  • 15
    • 84888021669 scopus 로고    scopus 로고
    • A fuzzy support vector machinealgorithm for classification based on a novel PIM fuzzy clusteringmethod
    • Feb.
    • Z. Wu, H. Zhang, and J. Liu, "A fuzzy support vector machinealgorithm for classification based on a novel PIM fuzzy clusteringmethod, " Neurocomputing, vol. 125, pp. 119-124, Feb. 2014.
    • (2014) Neurocomputing , vol.125 , pp. 119-124
    • Wu, Z.1    Zhang, H.2    Liu, J.3
  • 16
    • 79551627018 scopus 로고    scopus 로고
    • A kernel fuzzy c-meansclustering-based fuzzy support vector machine algorithm forclassification problems with outliers or noises
    • X. Yang, G. Zhang, J. Lu, and J. Ma, "A Kernel Fuzzy c-MeansClustering-Based Fuzzy Support Vector Machine Algorithm forClassification Problems With Outliers or Noises, " IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 105-115, 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.1 , pp. 105-115
    • Yang, X.1    Zhang, G.2    Lu, J.3    Ma, J.4
  • 17
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep.
    • E. a. Garcia and H. He, "Learning from Imbalanced Data, " IEEETrans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
    • (2009) IEEETrans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • Garcia E, A.1    He, H.2
  • 18
    • 27144549260 scopus 로고    scopus 로고
    • Editorial-: Specialissue on learning from imbalanced data sets
    • N. V Chawla, N. Japkowicz, and A. Kolcs, "Editorial-: SpecialIssue on Learning from Imbalanced Data Sets, " ACM SIGKDDExplorations, vol. 6, no. 1, pp. 1-6, 2004.
    • (2004) ACM SIGKDDExplorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcs, A.3
  • 20
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling forclass-imbalance larning
    • X. Liu, J. Wu, and Z. Zhou, "Exploratory Undersampling forClass-Imbalance Larning, " IEEE Trans. Syst. man, Cybern., vol. 39, no. 2, pp. 539-550, 2009.
    • (2009) IEEE Trans. Syst. Man, Cybern. , vol.39 , Issue.2 , pp. 539-550
    • Liu, X.1    Wu, J.2    Zhou, Z.3
  • 21
    • 79952441195 scopus 로고    scopus 로고
    • A new weighted approach toimbalanced data classification problem via support vector machinewith quadratic cost function
    • Jul.
    • J. P. Hwang, S. Park, and E. Kim, "A new weighted approach toimbalanced data classification problem via support vector machinewith quadratic cost function, " Expert Syst. Appl., vol. 38, no. 7, pp. 8580-8585, Jul. 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.7 , pp. 8580-8585
    • Hwang, J.P.1    Park, S.2    Kim, E.3
  • 26
    • 84896498038 scopus 로고    scopus 로고
    • Approximating support vector machine withartificial neural network for fast prediction
    • S. Kang and S. Cho, "Approximating support vector machine withartificial neural network for fast prediction, " Expert Syst. Appl., vol. 41, no. 10, pp. 4989-4995, 2014.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.10 , pp. 4989-4995
    • Kang, S.1    Cho, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.