-
1
-
-
34249661124
-
Support vector machine in machinecondition monitoring and fault diagnosis
-
A. Widodo and B.-S. Yang, "Support vector machine in machinecondition monitoring and fault diagnosis, " Mech. Syst. SignalProcess., vol. 21, pp. 2560-2574, 2007.
-
(2007)
Mech. Syst. SignalProcess.
, vol.21
, pp. 2560-2574
-
-
Widodo, A.1
Yang, B.-S.2
-
4
-
-
77953089698
-
FSVM-cil: Fuzzy support vectormachines for class imbalance learning
-
Jun.
-
R. Batuwita and V. Palade, "FSVM-CIL: Fuzzy Support VectorMachines for Class Imbalance Learning, " IEEE Trans. Fuzzy Syst., vol. 18, no. 3, pp. 558-571, Jun. 2010.
-
(2010)
IEEE Trans. Fuzzy Syst.
, vol.18
, Issue.3
, pp. 558-571
-
-
Batuwita, R.1
Palade, V.2
-
5
-
-
84900803418
-
An efficient weighted Lagrangian twin support vector machine forimbalanced data classification
-
Y. H. Shao, W. J. Chen, J. J. Zhang, Z. Wang, and N. Y. Deng, "An efficient weighted Lagrangian twin support vector machine forimbalanced data classification, " Pattern Recognit., vol. 47, pp. 3158-3167, 2014.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 3158-3167
-
-
Shao, Y.H.1
Chen, W.J.2
Zhang, J.J.3
Wang, Z.4
Deng, N.Y.5
-
6
-
-
84900803418
-
An efficient weighted Lagrangian twin support vector machine forimbalanced data classification
-
Y. H. Shao, W. J. Chen, J. J. Zhang, Z. Wang, and N. Y. Deng, "An efficient weighted Lagrangian twin support vector machine forimbalanced data classification, " Pattern Recognit., vol. 47, pp. 3158-3167, 2014.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 3158-3167
-
-
Shao, Y.H.1
Chen, W.J.2
Zhang, J.J.3
Wang, Z.4
Deng, N.Y.5
-
7
-
-
0036505650
-
Fuzzy support vector machines
-
Jan.
-
C.-F. Lin and S.-D. Wang, "Fuzzy Support Vector Machines., "IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 464-71, Jan. 2002.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, Issue.2
, pp. 464-471
-
-
Lin, C.-F.1
Wang, S.-D.2
-
8
-
-
4644290661
-
Training algorithms for fuzzy support vectormachines with noisy data
-
Oct.
-
C. Lin and S. Wang, "Training algorithms for fuzzy support vectormachines with noisy data, " Pattern Recognit. Lett., vol. 25, no. 14, pp. 1647-1656, Oct. 2004.
-
(2004)
Pattern Recognit. Lett.
, vol.25
, Issue.14
, pp. 1647-1656
-
-
Lin, C.1
Wang, S.2
-
9
-
-
0347512512
-
-
O. L. Mangasarian and D. R. Musicant, "Lagrangian SupportVector Machines, " vol. 1, no. 3, pp. 161-177, 2001.
-
(2001)
Lagrangian SupportVector Machines
, vol.1
, Issue.3
, pp. 161-177
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
11
-
-
80053062615
-
Adaptive neural-fuzzy inference system forclassification of rail quality data with bootstrapping-based oversampling
-
Jun.
-
Y. Y. Yang, M. Mahfouf, G. Panoutsos, Q. Zhang, and S. Thornton, "Adaptive neural-fuzzy inference system forclassification of rail quality data with bootstrapping-based oversampling, "IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE 2011), pp. 2205-2212, Jun. 2011.
-
(2011)
IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE 2011)
, pp. 2205-2212
-
-
Yang, Y.Y.1
Mahfouf, M.2
Panoutsos, G.3
Zhang, Q.4
Thornton, S.5
-
12
-
-
84929773806
-
Supportvector machines for class imbalance rail data classification withbootstrapping-based over-samplingand undersampling
-
A. Zughrat, M. Mahfouf, Y. Y. Yang, and S. Thornton, "SupportVector Machines for Class Imbalance Rail Data Classification withBootstrapping-based Over-Samplingand UnderSampling, " in The19th World Congress of the International Federation of AutomaticControl, IFAC, 2014, pp. 8756-8761.
-
(2014)
The19th World Congress of the International Federation of AutomaticControl, IFAC
, pp. 8756-8761
-
-
Zughrat, A.1
Mahfouf, M.2
Yang, Y.Y.3
Thornton, S.4
-
13
-
-
63449090301
-
Learning on the Border-: Active Learning inImbalanced Data Classification
-
C. L. Giles, "Learning on the Border-: Active Learning inImbalanced Data Classification, " in 16th ACM conf. Informationand Knowledge Management, 2007, pp. 127-136.
-
(2007)
16th ACM Conf. Informationand Knowledge Management
, pp. 127-136
-
-
Giles, C.L.1
-
14
-
-
22944452794
-
Applying support vectormachines to imbalanced datasets
-
R. Akbani, S. Kwek, and N. Japkowicz, "Applying Support VectorMachines to Imbalanced Datasets, " Proc. Eur. Conf. Mach. Learn. ECML, pp. 39-50, 2004.
-
(2004)
Proc. Eur. Conf. Mach. Learn. ECML
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
15
-
-
84888021669
-
A fuzzy support vector machinealgorithm for classification based on a novel PIM fuzzy clusteringmethod
-
Feb.
-
Z. Wu, H. Zhang, and J. Liu, "A fuzzy support vector machinealgorithm for classification based on a novel PIM fuzzy clusteringmethod, " Neurocomputing, vol. 125, pp. 119-124, Feb. 2014.
-
(2014)
Neurocomputing
, vol.125
, pp. 119-124
-
-
Wu, Z.1
Zhang, H.2
Liu, J.3
-
16
-
-
79551627018
-
A kernel fuzzy c-meansclustering-based fuzzy support vector machine algorithm forclassification problems with outliers or noises
-
X. Yang, G. Zhang, J. Lu, and J. Ma, "A Kernel Fuzzy c-MeansClustering-Based Fuzzy Support Vector Machine Algorithm forClassification Problems With Outliers or Noises, " IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 105-115, 2011.
-
(2011)
IEEE Trans. Fuzzy Syst.
, vol.19
, Issue.1
, pp. 105-115
-
-
Yang, X.1
Zhang, G.2
Lu, J.3
Ma, J.4
-
17
-
-
68549133155
-
Learning from imbalanced data
-
Sep.
-
E. a. Garcia and H. He, "Learning from Imbalanced Data, " IEEETrans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
-
(2009)
IEEETrans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
Garcia E, A.1
He, H.2
-
18
-
-
27144549260
-
Editorial-: Specialissue on learning from imbalanced data sets
-
N. V Chawla, N. Japkowicz, and A. Kolcs, "Editorial-: SpecialIssue on Learning from Imbalanced Data Sets, " ACM SIGKDDExplorations, vol. 6, no. 1, pp. 1-6, 2004.
-
(2004)
ACM SIGKDDExplorations
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcs, A.3
-
19
-
-
33745789237
-
Boosting prediction accuracy onimbalanced datasets with SVM ensembles
-
Y. Liu, A. An, and X. Huang, "Boosting Prediction Accuracy onImbalanced Datasets with SVM Ensembles, " in 10th Pacific-AsiaConference on Knowledge Discovery and Data Mining, 2006, vol. 3918, pp. 107-118.
-
(2006)
10th Pacific-AsiaConference on Knowledge Discovery and Data Mining
, vol.3918
, pp. 107-118
-
-
Liu, Y.1
An, A.2
Huang, X.3
-
20
-
-
64049108468
-
Exploratory undersampling forclass-imbalance larning
-
X. Liu, J. Wu, and Z. Zhou, "Exploratory Undersampling forClass-Imbalance Larning, " IEEE Trans. Syst. man, Cybern., vol. 39, no. 2, pp. 539-550, 2009.
-
(2009)
IEEE Trans. Syst. Man, Cybern.
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.1
Wu, J.2
Zhou, Z.3
-
21
-
-
79952441195
-
A new weighted approach toimbalanced data classification problem via support vector machinewith quadratic cost function
-
Jul.
-
J. P. Hwang, S. Park, and E. Kim, "A new weighted approach toimbalanced data classification problem via support vector machinewith quadratic cost function, " Expert Syst. Appl., vol. 38, no. 7, pp. 8580-8585, Jul. 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.7
, pp. 8580-8585
-
-
Hwang, J.P.1
Park, S.2
Kim, E.3
-
22
-
-
0346586663
-
SMOTE-: Synthetic minority over-samplingtechnique
-
N. V Chawla, K. W. Bowyer, L. O. Hall, and W. PhilipKegelmeyer, "SMOTE-: Synthetic Minority Over-samplingTEchnique, " Artif. Intell. Res., vol. 16, pp. 341-378, 2002.
-
(2002)
Artif. Intell. Res.
, vol.16
, pp. 341-378
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
PhilipKegelmeyer, W.4
-
23
-
-
61549114384
-
SVMsmodeling for highly imbalanced classification
-
Feb.
-
Y. Tang, Y.-Q. Zhang, N. V Chawla, and S. Krasser, "SVMsmodeling for highly imbalanced classification., " IEEE Trans. Syst. Man. Cybern. B. Cybern., vol. 39, no. 1, pp. 281-88, Feb. 2009.
-
(2009)
IEEE Trans. Syst. Man. Cybern. B. Cybern.
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.-Q.2
Chawla, N.V.3
Krasser, S.4
-
24
-
-
84929792044
-
Hierarchical fuzzy Support VectorMachine (SVM) for Rail Data Classification
-
R. Muscat, M. Mahfouf, A. Zughrat, Y. Y. Yang, S. Thornton, A. V. Khondabi, and S. Sotanos, "Hierarchical fuzzy Support VectorMachine (SVM) for Rail Data Classification, " in The 19th WorldCongress of the International Federation of Automatic Control, IFAC, 2014, pp. 10652-10657.
-
(2014)
The 19th WorldCongress of the International Federation of Automatic Control, IFAC
, pp. 10652-10657
-
-
Muscat, R.1
Mahfouf, M.2
Zughrat, A.3
Yang, Y.Y.4
Thornton, S.5
Khondabi, A.V.6
Sotanos, S.7
-
25
-
-
74849103678
-
Design of a modified oneagainst-all SVM classifier
-
October
-
J. Manikandan and B. Venkataramani, "Design of a modified oneagainst-all SVM classifier, " in Conference Proceedings-IEEEInternational Conference on Systems, Man and Cybernetics, 2009, October, pp. 1869-1874.
-
(2009)
Conference Proceedings-IEEEInternational Conference on Systems, Man and Cybernetics
, pp. 1869-1874
-
-
Manikandan, J.1
Venkataramani, B.2
-
26
-
-
84896498038
-
Approximating support vector machine withartificial neural network for fast prediction
-
S. Kang and S. Cho, "Approximating support vector machine withartificial neural network for fast prediction, " Expert Syst. Appl., vol. 41, no. 10, pp. 4989-4995, 2014.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.10
, pp. 4989-4995
-
-
Kang, S.1
Cho, S.2
|