-
1
-
-
0002433285
-
Modeling feature selectivity in local cortical circuits
-
(eds. Koch, C. & Segev, I.) MIT Press, Cambridge, Massachusetts, USA
-
Hansel, D. & Sompolinsky, H. Modeling feature selectivity in local cortical circuits. in Methods in Neuronal Modeling 2nd edn. (eds. Koch, C. & Segev, I.) 499-566 (MIT Press, Cambridge, Massachusetts, USA, 1998).
-
(1998)
Methods in Neuronal Modeling 2nd Edn
, pp. 499-566
-
-
Hansel, D.1
Sompolinsky, H.2
-
2
-
-
0033711439
-
Stability of the memory of eye position in a recurrent network of conductance-based model neurons
-
Seung, H.S., Lee, D.D., Reis, B.Y. & Tank, D.W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259-271 (2000).
-
(2000)
Neuron
, vol.26
, pp. 259-271
-
-
Seung, H.S.1
Lee, D.D.2
Reis, B.Y.3
Tank, D.W.4
-
3
-
-
0037028039
-
Probabilistic decision making by slow reverberation in cortical circuits
-
Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955-968 (2002).
-
(2002)
Neuron
, vol.36
, pp. 955-968
-
-
Wang, X.-J.1
-
4
-
-
0037566546
-
Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks
-
Renart, A., Song, P. & Wang, X.-J. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38, 473-485 (2003).
-
(2003)
Neuron
, vol.38
, pp. 473-485
-
-
Renart, A.1
Song, P.2
Wang, X.-J.3
-
5
-
-
12844260220
-
Angular path integration by moving "hill of activity": A spiking neuron model without recurrent excitation of the head-direction system
-
Song, P. & Wang, X.-J. Angular path integration by moving "hill of activity": a spiking neuron model without recurrent excitation of the head-direction system. J. Neurosci. 25, 1002-1014 (2005).
-
(2005)
J. Neurosci.
, vol.25
, pp. 1002-1014
-
-
Song, P.1
Wang, X.-J.2
-
6
-
-
18544379461
-
A unifed approach to building and controlling spiking attractor networks
-
Eliasmith, C. A unifed approach to building and controlling spiking attractor networks. Neural Comput. 17, 1276-1314 (2005).
-
(2005)
Neural Comput.
, vol.17
, pp. 1276-1314
-
-
Eliasmith, C.1
-
7
-
-
33846556028
-
Computational aspects of feedback in neural circuits
-
Maass, W., Joshi, P. & Sontag, E.D. Computational aspects of feedback in neural circuits. PLoS Comput. Biol. 3, e165 (2007).
-
(2007)
PLoS Comput. Biol.
, vol.3
, pp. e165
-
-
Maass, W.1
Joshi, P.2
Sontag, E.D.3
-
8
-
-
61449268067
-
Accurate path integration in continuous attractor network models of grid cells
-
Burak, Y. & Fiete, I.R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).
-
(2009)
PLoS Comput. Biol.
, vol.5
, pp. e1000291
-
-
Burak, Y.1
Fiete, I.R.2
-
9
-
-
79952458995
-
Spike-based population coding and working memory
-
Boerlin, M. & Denève, S. Spike-based population coding and working memory. PLoS Comput. Biol. 7, e1001080 (2011).
-
(2011)
PLoS Comput. Biol.
, vol.7
, pp. e1001080
-
-
Boerlin, M.1
Denève, S.2
-
10
-
-
84888221902
-
Predictive coding of dynamical variables in balanced spiking networks
-
Boerlin, M., Machens, C.K. & Denève, S. Predictive coding of dynamical variables in balanced spiking networks. PLoS Comput. Biol. 9, e1003258 (2013).
-
(2013)
PLoS Comput. Biol.
, vol.9
, pp. e1003258
-
-
Boerlin, M.1
Machens, C.K.2
Denève, S.3
-
11
-
-
84883447531
-
Balanced cortical microcircuitry for maintaining information in working memory
-
Lim, S. & Goldman, M.S. Balanced cortical microcircuitry for maintaining information in working memory. Nat. Neurosci. 16, 1306-1314 (2013).
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 1306-1314
-
-
Lim, S.1
Goldman, M.S.2
-
12
-
-
84937597362
-
Constructing precisely computing networks with biophysical spiking neurons
-
Schwemmer, M.A., Fairhall, A.L., Denève, S. & Shea-Brown, E.T. Constructing precisely computing networks with biophysical spiking neurons. J. Neurosci. 35, 10112-10134 (2015).
-
(2015)
J. Neurosci.
, vol.35
, pp. 10112-10134
-
-
Schwemmer, M.A.1
Fairhall, A.L.2
Denève, S.3
Shea-Brown, E.T.4
-
13
-
-
0028910018
-
Temporal information transformed into a spatial code by a neural network with realistic properties
-
Buonomano, D.V. & Merzenich, M.M. Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028-1030 (1995).
-
(1995)
Science
, vol.267
, pp. 1028-1030
-
-
Buonomano, D.V.1
Merzenich, M.M.2
-
14
-
-
33344478663
-
The tempotron: A neuron that learns spike timing-based decisions
-
Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9, 420-428 (2006).
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 420-428
-
-
Gütig, R.1
Sompolinsky, H.2
-
15
-
-
33646801243
-
Optimal spike-timing-dependent plasticity for precise action potential fring in supervised learning
-
Pfster, J.-P., Toyoizumi, T., Barber, D. & Gerstner, W. Optimal spike-timing-dependent plasticity for precise action potential fring in supervised learning. Neural Comput. 18, 1318-1348 (2006).
-
(2006)
Neural Comput.
, vol.18
, pp. 1318-1348
-
-
Pfster, J.-P.1
Toyoizumi, T.2
Barber, D.3
Gerstner, W.4
-
16
-
-
0033518170
-
Stable propagation of synchronous spiking in cortical neural networks
-
Diesmann, M., Gewaltig, M.-O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529-533 (1999).
-
(1999)
Nature
, vol.402
, pp. 529-533
-
-
Diesmann, M.1
Gewaltig, M.-O.2
Aertsen, A.3
-
17
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531-2560 (2002).
-
(2002)
Neural Comput.
, vol.14
, pp. 2531-2560
-
-
Maass, W.1
Natschläger, T.2
Markram, H.3
-
18
-
-
1842578358
-
Climbing neuronal activity as an event-based cortical representation of time
-
Reutimann, J., Yakovlev, V., Fusi, S. & Senn, W. Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295-3303 (2004).
-
(2004)
J. Neurosci.
, vol.24
, pp. 3295-3303
-
-
Reutimann, J.1
Yakovlev, V.2
Fusi, S.3
Senn, W.4
-
19
-
-
28044448948
-
Signal propagation and logic gating in networks of integrate-and-fre neurons
-
Vogels, T.P. & Abbott, L.F. Signal propagation and logic gating in networks of integrate-and-fre neurons. J. Neurosci. 25, 10786-10795 (2005).
-
(2005)
J. Neurosci.
, vol.25
, pp. 10786-10795
-
-
Vogels, T.P.1
Abbott, L.F.2
-
20
-
-
70350336841
-
Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner
-
Liu, J.K. & Buonomano, D.V. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner. J. Neurosci. 29, 13172-13181 (2009).
-
(2009)
J. Neurosci.
, vol.29
, pp. 13172-13181
-
-
Liu, J.K.1
Buonomano, D.V.2
-
21
-
-
84886303940
-
Guiding synchrony through random networks
-
Jahnke, S., Timme, M. & Memmesheimer, R.-M. Guiding synchrony through random networks. Phys. Rev. X 2, 041016 (2012).
-
(2012)
Phys. Rev. X
, vol.2
, pp. 041016
-
-
Jahnke, S.1
Timme, M.2
Memmesheimer, R.-M.3
-
22
-
-
84965113164
-
-
Thalmeier, D., Uhlmann, M., Kappen, H.J. & Memmesheimer, R.-M. Learning universal computations with spikes. Preprint at http://arxiv.org/abs/1505.07866 (2015).
-
(2015)
Learning Universal Computations with Spikes
-
-
Thalmeier, D.1
Uhlmann, M.2
Kappen, H.J.3
Memmesheimer, R.-M.4
-
24
-
-
84901228908
-
Learning precisely timed spikes
-
Memmesheimer, R.-M., Rubin, R., Ölveczky, B.P. & Sompolinsky, H. Learning precisely timed spikes. Neuron 82, 925-938 (2014).
-
(2014)
Neuron
, vol.82
, pp. 925-938
-
-
Memmesheimer, R.-M.1
Rubin, R.2
Ölveczky, B.P.3
Sompolinsky, H.4
-
25
-
-
84870209909
-
A large-scale model of the functioning brain
-
Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338, 1202-1205 (2012).
-
(2012)
Science
, vol.338
, pp. 1202-1205
-
-
Eliasmith, C.1
-
26
-
-
84902438429
-
Optimal control of transient dynamics in balanced networks supports generation of complex movements
-
Hennequin, G., Vogels, T.P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82, 1394-1406 (2014).
-
(2014)
Neuron
, vol.82
, pp. 1394-1406
-
-
Hennequin, G.1
Vogels, T.P.2
Gerstner, W.3
-
27
-
-
77649334232
-
Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classifcation, and spike shifting
-
Ponulak, F. & Kasiński, A. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classifcation, and spike shifting. Neural Comput. 22, 467-510 (2010).
-
(2010)
Neural Comput.
, vol.22
, pp. 467-510
-
-
Ponulak, F.1
Kasiński, A.2
-
28
-
-
84864668988
-
The chronotron: A neuron that learns to fre temporally precise spike patterns
-
Florian, R.V. The chronotron: a neuron that learns to fre temporally precise spike patterns. PLoS One 7, e40233 (2012).
-
(2012)
PLoS One
, vol.7
, pp. e40233
-
-
Florian, R.V.1
-
29
-
-
84878514215
-
Matching recall and storage in sequence learning with spiking neural networks
-
Brea, J., Senn, W. & Pfster, J.-P. Matching recall and storage in sequence learning with spiking neural networks. J. Neurosci. 33, 9565-9575 (2013).
-
(2013)
J. Neurosci.
, vol.33
, pp. 9565-9575
-
-
Brea, J.1
Senn, W.2
Pfster, J.-P.3
-
30
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
31
-
-
84887390404
-
Context-dependent computation by recurrent dynamics in prefrontal cortex
-
Mante, V., Sussillo, D., Shenoy, K.V. & Newsome, W.T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).
-
(2013)
Nature
, vol.503
, pp. 78-84
-
-
Mante, V.1
Sussillo, D.2
Shenoy, K.V.3
Newsome, W.T.4
-
32
-
-
84933280082
-
A neural network that fnds a naturalistic solution for the production of muscle activity
-
Sussillo, D., Churchland, M.M., Kaufman, M.T. & Shenoy, K.V. A neural network that fnds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025-1033 (2015).
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 1025-1033
-
-
Sussillo, D.1
Churchland, M.M.2
Kaufman, M.T.3
Shenoy, K.V.4
-
33
-
-
0036826068
-
Error-backpropagation in temporally encoded networks of spiking neurons
-
Bohte, S.M., Kok, J.N. & Poutré, H.L. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17-37 (2002).
-
(2002)
Neurocomputing
, vol.48
, pp. 17-37
-
-
Bohte, S.M.1
Kok, J.N.2
Poutré, H.L.3
-
34
-
-
33645701621
-
Learning beyond fnite memory in recurrent networks of spiking neurons
-
Tino, P. & Mills, A.J.S. Learning beyond fnite memory in recurrent networks of spiking neurons. Neural Comput. 18, 591-613 (2006).
-
(2006)
Neural Comput.
, vol.18
, pp. 591-613
-
-
Tino, P.1
Mills, A.J.S.2
-
35
-
-
84877839888
-
Supervised learning in multilayer spiking neural networks
-
Sporea, I. & Grüning, A. Supervised learning in multilayer spiking neural networks. Neural Comput. 25, 473-509 (2013).
-
(2013)
Neural Comput.
, vol.25
, pp. 473-509
-
-
Sporea, I.1
Grüning, A.2
-
36
-
-
0029835892
-
Chaos in neuronal networks with balanced excitatory and inhibitory activity
-
van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724-1726 (1996).
-
(1996)
Science
, vol.274
, pp. 1724-1726
-
-
Van Vreeswijk, C.1
Sompolinsky, H.2
-
37
-
-
0034006515
-
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
-
Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183-208 (2000).
-
(2000)
J. Comput. Neurosci.
, vol.8
, pp. 183-208
-
-
Brunel, N.1
-
38
-
-
0002824144
-
Learning processes in an asymmetric threshold network
-
(eds. Bienenstock, E., Fogelman, F. & Weisbuch, G.) Springer, Berlin
-
LeCun, Y. Learning processes in an asymmetric threshold network. in Disordered Systems and Biological Organization (eds. Bienenstock, E., Fogelman, F. & Weisbuch, G.) 233-240 (Springer, Berlin, 1986).
-
(1986)
Disordered Systems and Biological Organization
, pp. 233-240
-
-
LeCun, Y.1
-
40
-
-
84879686840
-
Robust timing and motor patterns by taming chaos in recurrent neural networks
-
Laje, R. & Buonomano, D.V. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925-933 (2013).
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 925-933
-
-
Laje, R.1
Buonomano, D.V.2
-
41
-
-
84884198109
-
A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit
-
Fisher, D., Olasagasti, I., Tank, D.W., Aksay, E.R.F. & Goldman, M.S. A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit. Neuron 79, 987-1000 (2013).
-
(2013)
Neuron
, vol.79
, pp. 987-1000
-
-
Fisher, D.1
Olasagasti, I.2
Tank, D.W.3
Aksay, E.R.F.4
Goldman, M.S.5
-
42
-
-
84975770380
-
Recurrent network models of sequence generation and memory
-
in the press
-
Rajan, K., Harvey, C. & Tank, D. Recurrent network models of sequence generation and memory. Neuron (in the press).
-
Neuron
-
-
Rajan, K.1
Harvey, C.2
Tank, D.3
-
43
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
-
Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78-80 (2004).
-
(2004)
Science
, vol.304
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
44
-
-
68949147577
-
Generating coherent patterns of activity from chaotic neural networks
-
Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544-557 (2009).
-
(2009)
Neuron
, vol.63
, pp. 544-557
-
-
Sussillo, D.1
Abbott, L.F.2
-
45
-
-
84861401423
-
Transferring learning from external to internal weights in echo-state networks with sparse connectivity
-
Sussillo, D. & Abbott, L.F. Transferring learning from external to internal weights in echo-state networks with sparse connectivity. PLoS One 7, e37372 (2012).
-
(2012)
PLoS One
, vol.7
, pp. e37372
-
-
Sussillo, D.1
Abbott, L.F.2
-
46
-
-
85087935180
-
Reservoir computing trends
-
Lukoševicius, M., Jaeger, H. & Schrauwen, B. Reservoir computing trends. Künstl. Intell. 26, 365-371 (2012).
-
(2012)
Künstl. Intell.
, vol.26
, pp. 365-371
-
-
Lukoševicius, M.1
Jaeger, H.2
Schrauwen, B.3
-
47
-
-
84893503924
-
Neural circuits as computational dynamical systems
-
Sussillo, D. Neural circuits as computational dynamical systems. Curr. Opin. Neurobiol. 25, 156-163 (2014).
-
(2014)
Curr. Opin. Neurobiol.
, vol.25
, pp. 156-163
-
-
Sussillo, D.1
-
48
-
-
0009765286
-
-
MIT Press, Cambridge, Massachusetts, USA
-
Eliasmith, C. & Anderson, C. Neural Engineering: Computation, Representation and Dynamics in Neurobiological Systems (MIT Press, Cambridge, Massachusetts, USA, 2003).
-
(2003)
Neural Engineering: Computation, Representation and Dynamics in Neurobiological Systems
-
-
Eliasmith, C.1
Anderson, C.2
-
49
-
-
84975784709
-
Effcient codes and balanced networks
-
Denève, S. & Machens, C. Effcient codes and balanced networks. Nat. Neurosci. 19, 375-382 (2016).
-
(2016)
Nat. Neurosci.
, vol.19
, pp. 375-382
-
-
Denève, S.1
Machens, C.2
-
50
-
-
0027498486
-
The highly irregular fring of cortical cells is inconsistent with temporal integration of random EPSPs
-
Softky, W.R. & Koch, C. The highly irregular fring of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334-350 (1993).
-
(1993)
J. Neurosci.
, vol.13
, pp. 334-350
-
-
Softky, W.R.1
Koch, C.2
-
52
-
-
21844470231
-
Dynamic predictive coding by the retina
-
Hosoya, T., Baccus, S.A. & Meister, M. Dynamic predictive coding by the retina. Nature 436, 71-77 (2005).
-
(2005)
Nature
, vol.436
, pp. 71-77
-
-
Hosoya, T.1
Baccus, S.A.2
Meister, M.3
-
53
-
-
83755181763
-
Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
-
Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569-1573 (2011).
-
(2011)
Science
, vol.334
, pp. 1569-1573
-
-
Vogels, T.P.1
Sprekeler, H.2
Zenke, F.3
Clopath, C.4
Gerstner, W.5
-
54
-
-
84877783229
-
Learning optimal spike-based representations
-
Bourdoukan, R., Barrett, D.G.T., Machens, C.K. & Denève, S. Learning optimal spike-based representations. Adv. Neural Inf. Process. Syst. 25, 2294-2302 (2012).
-
(2012)
Adv. Neural Inf. Process. Syst.
, vol.25
, pp. 2294-2302
-
-
Bourdoukan, R.1
Barrett, D.G.T.2
Machens, C.K.3
Denève, S.4
-
55
-
-
84896707468
-
A temporal basis for predicting the sensory consequences of motor commands in an electric fsh
-
Kennedy, A. et al. A temporal basis for predicting the sensory consequences of motor commands in an electric fsh. Nat. Neurosci. 17, 416-422 (2014).
-
(2014)
Nat. Neurosci.
, vol.17
, pp. 416-422
-
-
Kennedy, A.1
-
56
-
-
84965127691
-
Enforcing balance allows local supervised learning in spiking recurrent networks
-
Bourdoukan, R. & Denève, S. Enforcing balance allows local supervised learning in spiking recurrent networks. Adv. Neural Inf. Process. Syst. 28, 982-990 (2015).
-
(2015)
Adv. Neural Inf. Process. Syst.
, vol.28
, pp. 982-990
-
-
Bourdoukan, R.1
Denève, S.2
-
57
-
-
67650298948
-
A spiking neural network model of an actor-critic learning agent
-
Potjans, W., Morrison, A. & Diesmann, M. A spiking neural network model of an actor-critic learning agent. Neural Comput. 21, 301-339 (2009).
-
(2009)
Neural Comput.
, vol.21
, pp. 301-339
-
-
Potjans, W.1
Morrison, A.2
Diesmann, M.3
-
58
-
-
84894276345
-
Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning
-
Hoerzer, G.M., Legenstein, R. & Maass, W. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. Cereb. Cortex 24, 677-690 (2014).
-
(2014)
Cereb. Cortex
, vol.24
, pp. 677-690
-
-
Hoerzer, G.M.1
Legenstein, R.2
Maass, W.3
-
59
-
-
74549209037
-
Spike-based reinforcement learning in continuous state and action space: When policy gradient methods fail
-
Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W. & Gerstner, W. Spike-based reinforcement learning in continuous state and action space: when policy gradient methods fail. PLoS Comput. Biol. 5, e1000586 (2009).
-
(2009)
PLoS Comput. Biol.
, vol.5
, pp. e1000586
-
-
Vasilaki, E.1
Frémaux, N.2
Urbanczik, R.3
Senn, W.4
Gerstner, W.5
-
60
-
-
84866941777
-
Spike-based decision learning of Nash equilibria in two-player games
-
Friedrich, J. & Senn, W. Spike-based decision learning of Nash equilibria in two-player games. PLoS Comput. Biol. 8, e1002691 (2012).
-
(2012)
PLoS Comput. Biol.
, vol.8
, pp. e1002691
-
-
Friedrich, J.1
Senn, W.2
-
61
-
-
84155183279
-
Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites
-
Kleindienst, T., Winnubst, J., Roth-Alpermann, C., Bonhoeffer, T. & Lohmann, C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron 72, 1012-1024 (2011).
-
(2011)
Neuron
, vol.72
, pp. 1012-1024
-
-
Kleindienst, T.1
Winnubst, J.2
Roth-Alpermann, C.3
Bonhoeffer, T.4
Lohmann, C.5
-
62
-
-
79952223377
-
Synaptic integration gradients in single cortical pyramidal cell dendrites
-
Branco, T. & Häusser, M. Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69, 885-892 (2011).
-
(2011)
Neuron
, vol.69
, pp. 885-892
-
-
Branco, T.1
Häusser, M.2
-
63
-
-
84895165380
-
Structured synaptic connectivity between hippocampal regions
-
Druckmann, S. et al. Structured synaptic connectivity between hippocampal regions. Neuron 81, 629-640 (2014).
-
(2014)
Neuron
, vol.81
, pp. 629-640
-
-
Druckmann, S.1
-
65
-
-
84875254396
-
Active properties of neocortical pyramidal neuron dendrites
-
Major, G., Larkum, M.E. & Schiller, J. Active properties of neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1-24 (2013).
-
(2013)
Annu. Rev. Neurosci.
, vol.36
, pp. 1-24
-
-
Major, G.1
Larkum, M.E.2
Schiller, J.3
|