메뉴 건너뛰기




Volumn 19, Issue 3, 2016, Pages 350-355

Building functional networks of spiking model neurons

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; AUTONOMOUS NETWORK; BIOLOGICAL MODEL; CELL JUNCTION; CONNECTOME; DRIVEN NETWORK; NERVE CELL; NERVE CELL NETWORK; PRIORITY JOURNAL; REVIEW; SPIKE; SPIKE CODING; ACTION POTENTIAL; ARTIFICIAL NEURAL NETWORK; PHYSIOLOGY;

EID: 84975690981     PISSN: 10976256     EISSN: 15461726     Source Type: Journal    
DOI: 10.1038/nn.4241     Document Type: Review
Times cited : (200)

References (65)
  • 1
    • 0002433285 scopus 로고    scopus 로고
    • Modeling feature selectivity in local cortical circuits
    • (eds. Koch, C. & Segev, I.) MIT Press, Cambridge, Massachusetts, USA
    • Hansel, D. & Sompolinsky, H. Modeling feature selectivity in local cortical circuits. in Methods in Neuronal Modeling 2nd edn. (eds. Koch, C. & Segev, I.) 499-566 (MIT Press, Cambridge, Massachusetts, USA, 1998).
    • (1998) Methods in Neuronal Modeling 2nd Edn , pp. 499-566
    • Hansel, D.1    Sompolinsky, H.2
  • 2
    • 0033711439 scopus 로고    scopus 로고
    • Stability of the memory of eye position in a recurrent network of conductance-based model neurons
    • Seung, H.S., Lee, D.D., Reis, B.Y. & Tank, D.W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259-271 (2000).
    • (2000) Neuron , vol.26 , pp. 259-271
    • Seung, H.S.1    Lee, D.D.2    Reis, B.Y.3    Tank, D.W.4
  • 3
    • 0037028039 scopus 로고    scopus 로고
    • Probabilistic decision making by slow reverberation in cortical circuits
    • Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955-968 (2002).
    • (2002) Neuron , vol.36 , pp. 955-968
    • Wang, X.-J.1
  • 4
    • 0037566546 scopus 로고    scopus 로고
    • Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks
    • Renart, A., Song, P. & Wang, X.-J. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38, 473-485 (2003).
    • (2003) Neuron , vol.38 , pp. 473-485
    • Renart, A.1    Song, P.2    Wang, X.-J.3
  • 5
    • 12844260220 scopus 로고    scopus 로고
    • Angular path integration by moving "hill of activity": A spiking neuron model without recurrent excitation of the head-direction system
    • Song, P. & Wang, X.-J. Angular path integration by moving "hill of activity": a spiking neuron model without recurrent excitation of the head-direction system. J. Neurosci. 25, 1002-1014 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 1002-1014
    • Song, P.1    Wang, X.-J.2
  • 6
    • 18544379461 scopus 로고    scopus 로고
    • A unifed approach to building and controlling spiking attractor networks
    • Eliasmith, C. A unifed approach to building and controlling spiking attractor networks. Neural Comput. 17, 1276-1314 (2005).
    • (2005) Neural Comput. , vol.17 , pp. 1276-1314
    • Eliasmith, C.1
  • 7
    • 33846556028 scopus 로고    scopus 로고
    • Computational aspects of feedback in neural circuits
    • Maass, W., Joshi, P. & Sontag, E.D. Computational aspects of feedback in neural circuits. PLoS Comput. Biol. 3, e165 (2007).
    • (2007) PLoS Comput. Biol. , vol.3 , pp. e165
    • Maass, W.1    Joshi, P.2    Sontag, E.D.3
  • 8
    • 61449268067 scopus 로고    scopus 로고
    • Accurate path integration in continuous attractor network models of grid cells
    • Burak, Y. & Fiete, I.R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000291
    • Burak, Y.1    Fiete, I.R.2
  • 9
    • 79952458995 scopus 로고    scopus 로고
    • Spike-based population coding and working memory
    • Boerlin, M. & Denève, S. Spike-based population coding and working memory. PLoS Comput. Biol. 7, e1001080 (2011).
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1001080
    • Boerlin, M.1    Denève, S.2
  • 10
    • 84888221902 scopus 로고    scopus 로고
    • Predictive coding of dynamical variables in balanced spiking networks
    • Boerlin, M., Machens, C.K. & Denève, S. Predictive coding of dynamical variables in balanced spiking networks. PLoS Comput. Biol. 9, e1003258 (2013).
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003258
    • Boerlin, M.1    Machens, C.K.2    Denève, S.3
  • 11
    • 84883447531 scopus 로고    scopus 로고
    • Balanced cortical microcircuitry for maintaining information in working memory
    • Lim, S. & Goldman, M.S. Balanced cortical microcircuitry for maintaining information in working memory. Nat. Neurosci. 16, 1306-1314 (2013).
    • (2013) Nat. Neurosci. , vol.16 , pp. 1306-1314
    • Lim, S.1    Goldman, M.S.2
  • 12
    • 84937597362 scopus 로고    scopus 로고
    • Constructing precisely computing networks with biophysical spiking neurons
    • Schwemmer, M.A., Fairhall, A.L., Denève, S. & Shea-Brown, E.T. Constructing precisely computing networks with biophysical spiking neurons. J. Neurosci. 35, 10112-10134 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 10112-10134
    • Schwemmer, M.A.1    Fairhall, A.L.2    Denève, S.3    Shea-Brown, E.T.4
  • 13
    • 0028910018 scopus 로고
    • Temporal information transformed into a spatial code by a neural network with realistic properties
    • Buonomano, D.V. & Merzenich, M.M. Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028-1030 (1995).
    • (1995) Science , vol.267 , pp. 1028-1030
    • Buonomano, D.V.1    Merzenich, M.M.2
  • 14
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing-based decisions
    • Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9, 420-428 (2006).
    • (2006) Nat. Neurosci. , vol.9 , pp. 420-428
    • Gütig, R.1    Sompolinsky, H.2
  • 15
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spike-timing-dependent plasticity for precise action potential fring in supervised learning
    • Pfster, J.-P., Toyoizumi, T., Barber, D. & Gerstner, W. Optimal spike-timing-dependent plasticity for precise action potential fring in supervised learning. Neural Comput. 18, 1318-1348 (2006).
    • (2006) Neural Comput. , vol.18 , pp. 1318-1348
    • Pfster, J.-P.1    Toyoizumi, T.2    Barber, D.3    Gerstner, W.4
  • 16
    • 0033518170 scopus 로고    scopus 로고
    • Stable propagation of synchronous spiking in cortical neural networks
    • Diesmann, M., Gewaltig, M.-O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529-533 (1999).
    • (1999) Nature , vol.402 , pp. 529-533
    • Diesmann, M.1    Gewaltig, M.-O.2    Aertsen, A.3
  • 17
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531-2560 (2002).
    • (2002) Neural Comput. , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 18
    • 1842578358 scopus 로고    scopus 로고
    • Climbing neuronal activity as an event-based cortical representation of time
    • Reutimann, J., Yakovlev, V., Fusi, S. & Senn, W. Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295-3303 (2004).
    • (2004) J. Neurosci. , vol.24 , pp. 3295-3303
    • Reutimann, J.1    Yakovlev, V.2    Fusi, S.3    Senn, W.4
  • 19
    • 28044448948 scopus 로고    scopus 로고
    • Signal propagation and logic gating in networks of integrate-and-fre neurons
    • Vogels, T.P. & Abbott, L.F. Signal propagation and logic gating in networks of integrate-and-fre neurons. J. Neurosci. 25, 10786-10795 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 10786-10795
    • Vogels, T.P.1    Abbott, L.F.2
  • 20
    • 70350336841 scopus 로고    scopus 로고
    • Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner
    • Liu, J.K. & Buonomano, D.V. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner. J. Neurosci. 29, 13172-13181 (2009).
    • (2009) J. Neurosci. , vol.29 , pp. 13172-13181
    • Liu, J.K.1    Buonomano, D.V.2
  • 21
  • 25
    • 84870209909 scopus 로고    scopus 로고
    • A large-scale model of the functioning brain
    • Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338, 1202-1205 (2012).
    • (2012) Science , vol.338 , pp. 1202-1205
    • Eliasmith, C.1
  • 26
    • 84902438429 scopus 로고    scopus 로고
    • Optimal control of transient dynamics in balanced networks supports generation of complex movements
    • Hennequin, G., Vogels, T.P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82, 1394-1406 (2014).
    • (2014) Neuron , vol.82 , pp. 1394-1406
    • Hennequin, G.1    Vogels, T.P.2    Gerstner, W.3
  • 27
    • 77649334232 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classifcation, and spike shifting
    • Ponulak, F. & Kasiński, A. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classifcation, and spike shifting. Neural Comput. 22, 467-510 (2010).
    • (2010) Neural Comput. , vol.22 , pp. 467-510
    • Ponulak, F.1    Kasiński, A.2
  • 28
    • 84864668988 scopus 로고    scopus 로고
    • The chronotron: A neuron that learns to fre temporally precise spike patterns
    • Florian, R.V. The chronotron: a neuron that learns to fre temporally precise spike patterns. PLoS One 7, e40233 (2012).
    • (2012) PLoS One , vol.7 , pp. e40233
    • Florian, R.V.1
  • 29
    • 84878514215 scopus 로고    scopus 로고
    • Matching recall and storage in sequence learning with spiking neural networks
    • Brea, J., Senn, W. & Pfster, J.-P. Matching recall and storage in sequence learning with spiking neural networks. J. Neurosci. 33, 9565-9575 (2013).
    • (2013) J. Neurosci. , vol.33 , pp. 9565-9575
    • Brea, J.1    Senn, W.2    Pfster, J.-P.3
  • 31
    • 84887390404 scopus 로고    scopus 로고
    • Context-dependent computation by recurrent dynamics in prefrontal cortex
    • Mante, V., Sussillo, D., Shenoy, K.V. & Newsome, W.T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).
    • (2013) Nature , vol.503 , pp. 78-84
    • Mante, V.1    Sussillo, D.2    Shenoy, K.V.3    Newsome, W.T.4
  • 32
    • 84933280082 scopus 로고    scopus 로고
    • A neural network that fnds a naturalistic solution for the production of muscle activity
    • Sussillo, D., Churchland, M.M., Kaufman, M.T. & Shenoy, K.V. A neural network that fnds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025-1033 (2015).
    • (2015) Nat. Neurosci. , vol.18 , pp. 1025-1033
    • Sussillo, D.1    Churchland, M.M.2    Kaufman, M.T.3    Shenoy, K.V.4
  • 33
    • 0036826068 scopus 로고    scopus 로고
    • Error-backpropagation in temporally encoded networks of spiking neurons
    • Bohte, S.M., Kok, J.N. & Poutré, H.L. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17-37 (2002).
    • (2002) Neurocomputing , vol.48 , pp. 17-37
    • Bohte, S.M.1    Kok, J.N.2    Poutré, H.L.3
  • 34
    • 33645701621 scopus 로고    scopus 로고
    • Learning beyond fnite memory in recurrent networks of spiking neurons
    • Tino, P. & Mills, A.J.S. Learning beyond fnite memory in recurrent networks of spiking neurons. Neural Comput. 18, 591-613 (2006).
    • (2006) Neural Comput. , vol.18 , pp. 591-613
    • Tino, P.1    Mills, A.J.S.2
  • 35
    • 84877839888 scopus 로고    scopus 로고
    • Supervised learning in multilayer spiking neural networks
    • Sporea, I. & Grüning, A. Supervised learning in multilayer spiking neural networks. Neural Comput. 25, 473-509 (2013).
    • (2013) Neural Comput. , vol.25 , pp. 473-509
    • Sporea, I.1    Grüning, A.2
  • 36
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724-1726 (1996).
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 37
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183-208 (2000).
    • (2000) J. Comput. Neurosci. , vol.8 , pp. 183-208
    • Brunel, N.1
  • 38
    • 0002824144 scopus 로고
    • Learning processes in an asymmetric threshold network
    • (eds. Bienenstock, E., Fogelman, F. & Weisbuch, G.) Springer, Berlin
    • LeCun, Y. Learning processes in an asymmetric threshold network. in Disordered Systems and Biological Organization (eds. Bienenstock, E., Fogelman, F. & Weisbuch, G.) 233-240 (Springer, Berlin, 1986).
    • (1986) Disordered Systems and Biological Organization , pp. 233-240
    • LeCun, Y.1
  • 40
    • 84879686840 scopus 로고    scopus 로고
    • Robust timing and motor patterns by taming chaos in recurrent neural networks
    • Laje, R. & Buonomano, D.V. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925-933 (2013).
    • (2013) Nat. Neurosci. , vol.16 , pp. 925-933
    • Laje, R.1    Buonomano, D.V.2
  • 41
    • 84884198109 scopus 로고    scopus 로고
    • A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit
    • Fisher, D., Olasagasti, I., Tank, D.W., Aksay, E.R.F. & Goldman, M.S. A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit. Neuron 79, 987-1000 (2013).
    • (2013) Neuron , vol.79 , pp. 987-1000
    • Fisher, D.1    Olasagasti, I.2    Tank, D.W.3    Aksay, E.R.F.4    Goldman, M.S.5
  • 42
    • 84975770380 scopus 로고    scopus 로고
    • Recurrent network models of sequence generation and memory
    • in the press
    • Rajan, K., Harvey, C. & Tank, D. Recurrent network models of sequence generation and memory. Neuron (in the press).
    • Neuron
    • Rajan, K.1    Harvey, C.2    Tank, D.3
  • 43
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78-80 (2004).
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 44
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544-557 (2009).
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2
  • 45
    • 84861401423 scopus 로고    scopus 로고
    • Transferring learning from external to internal weights in echo-state networks with sparse connectivity
    • Sussillo, D. & Abbott, L.F. Transferring learning from external to internal weights in echo-state networks with sparse connectivity. PLoS One 7, e37372 (2012).
    • (2012) PLoS One , vol.7 , pp. e37372
    • Sussillo, D.1    Abbott, L.F.2
  • 47
    • 84893503924 scopus 로고    scopus 로고
    • Neural circuits as computational dynamical systems
    • Sussillo, D. Neural circuits as computational dynamical systems. Curr. Opin. Neurobiol. 25, 156-163 (2014).
    • (2014) Curr. Opin. Neurobiol. , vol.25 , pp. 156-163
    • Sussillo, D.1
  • 49
    • 84975784709 scopus 로고    scopus 로고
    • Effcient codes and balanced networks
    • Denève, S. & Machens, C. Effcient codes and balanced networks. Nat. Neurosci. 19, 375-382 (2016).
    • (2016) Nat. Neurosci. , vol.19 , pp. 375-382
    • Denève, S.1    Machens, C.2
  • 50
    • 0027498486 scopus 로고
    • The highly irregular fring of cortical cells is inconsistent with temporal integration of random EPSPs
    • Softky, W.R. & Koch, C. The highly irregular fring of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334-350 (1993).
    • (1993) J. Neurosci. , vol.13 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 52
    • 21844470231 scopus 로고    scopus 로고
    • Dynamic predictive coding by the retina
    • Hosoya, T., Baccus, S.A. & Meister, M. Dynamic predictive coding by the retina. Nature 436, 71-77 (2005).
    • (2005) Nature , vol.436 , pp. 71-77
    • Hosoya, T.1    Baccus, S.A.2    Meister, M.3
  • 53
    • 83755181763 scopus 로고    scopus 로고
    • Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
    • Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569-1573 (2011).
    • (2011) Science , vol.334 , pp. 1569-1573
    • Vogels, T.P.1    Sprekeler, H.2    Zenke, F.3    Clopath, C.4    Gerstner, W.5
  • 55
    • 84896707468 scopus 로고    scopus 로고
    • A temporal basis for predicting the sensory consequences of motor commands in an electric fsh
    • Kennedy, A. et al. A temporal basis for predicting the sensory consequences of motor commands in an electric fsh. Nat. Neurosci. 17, 416-422 (2014).
    • (2014) Nat. Neurosci. , vol.17 , pp. 416-422
    • Kennedy, A.1
  • 56
    • 84965127691 scopus 로고    scopus 로고
    • Enforcing balance allows local supervised learning in spiking recurrent networks
    • Bourdoukan, R. & Denève, S. Enforcing balance allows local supervised learning in spiking recurrent networks. Adv. Neural Inf. Process. Syst. 28, 982-990 (2015).
    • (2015) Adv. Neural Inf. Process. Syst. , vol.28 , pp. 982-990
    • Bourdoukan, R.1    Denève, S.2
  • 57
    • 67650298948 scopus 로고    scopus 로고
    • A spiking neural network model of an actor-critic learning agent
    • Potjans, W., Morrison, A. & Diesmann, M. A spiking neural network model of an actor-critic learning agent. Neural Comput. 21, 301-339 (2009).
    • (2009) Neural Comput. , vol.21 , pp. 301-339
    • Potjans, W.1    Morrison, A.2    Diesmann, M.3
  • 58
    • 84894276345 scopus 로고    scopus 로고
    • Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning
    • Hoerzer, G.M., Legenstein, R. & Maass, W. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. Cereb. Cortex 24, 677-690 (2014).
    • (2014) Cereb. Cortex , vol.24 , pp. 677-690
    • Hoerzer, G.M.1    Legenstein, R.2    Maass, W.3
  • 59
    • 74549209037 scopus 로고    scopus 로고
    • Spike-based reinforcement learning in continuous state and action space: When policy gradient methods fail
    • Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W. & Gerstner, W. Spike-based reinforcement learning in continuous state and action space: when policy gradient methods fail. PLoS Comput. Biol. 5, e1000586 (2009).
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000586
    • Vasilaki, E.1    Frémaux, N.2    Urbanczik, R.3    Senn, W.4    Gerstner, W.5
  • 60
    • 84866941777 scopus 로고    scopus 로고
    • Spike-based decision learning of Nash equilibria in two-player games
    • Friedrich, J. & Senn, W. Spike-based decision learning of Nash equilibria in two-player games. PLoS Comput. Biol. 8, e1002691 (2012).
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002691
    • Friedrich, J.1    Senn, W.2
  • 61
    • 84155183279 scopus 로고    scopus 로고
    • Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites
    • Kleindienst, T., Winnubst, J., Roth-Alpermann, C., Bonhoeffer, T. & Lohmann, C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron 72, 1012-1024 (2011).
    • (2011) Neuron , vol.72 , pp. 1012-1024
    • Kleindienst, T.1    Winnubst, J.2    Roth-Alpermann, C.3    Bonhoeffer, T.4    Lohmann, C.5
  • 62
    • 79952223377 scopus 로고    scopus 로고
    • Synaptic integration gradients in single cortical pyramidal cell dendrites
    • Branco, T. & Häusser, M. Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69, 885-892 (2011).
    • (2011) Neuron , vol.69 , pp. 885-892
    • Branco, T.1    Häusser, M.2
  • 63
    • 84895165380 scopus 로고    scopus 로고
    • Structured synaptic connectivity between hippocampal regions
    • Druckmann, S. et al. Structured synaptic connectivity between hippocampal regions. Neuron 81, 629-640 (2014).
    • (2014) Neuron , vol.81 , pp. 629-640
    • Druckmann, S.1
  • 65
    • 84875254396 scopus 로고    scopus 로고
    • Active properties of neocortical pyramidal neuron dendrites
    • Major, G., Larkum, M.E. & Schiller, J. Active properties of neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1-24 (2013).
    • (2013) Annu. Rev. Neurosci. , vol.36 , pp. 1-24
    • Major, G.1    Larkum, M.E.2    Schiller, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.