메뉴 건너뛰기




Volumn 102, Issue , 2016, Pages 107-119

Engineered human vascularized constructs accelerate diabetic wound healing

Author keywords

Hyaluronan; Hydrogel; Induced pluripotent stem cell; Type 1 diabetes; Wound healing

Indexed keywords

CELLS; CYTOLOGY; ENDOTHELIAL CELLS; HYDROGELS; PATIENT TREATMENT;

EID: 84975520101     PISSN: 01429612     EISSN: 18785905     Source Type: Journal    
DOI: 10.1016/j.biomaterials.2016.06.009     Document Type: Article
Times cited : (108)

References (52)
  • 1
    • 34249860326 scopus 로고    scopus 로고
    • Foot ulcers in the diabetic patient, prevention and treatment
    • [1] Wu, S.C., et al. Foot ulcers in the diabetic patient, prevention and treatment. Vasc. Health Risk Manag. 3:1 (2007), 65–76.
    • (2007) Vasc. Health Risk Manag. , vol.3 , Issue.1 , pp. 65-76
    • Wu, S.C.1
  • 2
    • 84975856269 scopus 로고    scopus 로고
    • Economic costs of diabetes in the U.S. in 2012
    • [2] American Diabetes, A, Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36:4 (2013), 1033–1046.
    • (2013) Diabetes Care , vol.36 , Issue.4 , pp. 1033-1046
    • American Diabetes, A,1
  • 3
    • 43749088730 scopus 로고    scopus 로고
    • Wound repair and regeneration
    • [3] Gurtner, G.C., et al. Wound repair and regeneration. Nature 453:7193 (2008), 314–321.
    • (2008) Nature , vol.453 , Issue.7193 , pp. 314-321
    • Gurtner, G.C.1
  • 4
    • 34250175160 scopus 로고    scopus 로고
    • The basis of fibrosis and following thermal injury wound healing disorders
    • S69–S69
    • [4] Tredget, E.E., The basis of fibrosis and following thermal injury wound healing disorders. J. Trauma-Injury Infect. Crit. Care, 62(6), 2007 S69–S69.
    • (2007) J. Trauma-Injury Infect. Crit. Care , vol.62 , Issue.6
    • Tredget, E.E.1
  • 5
    • 0037223577 scopus 로고    scopus 로고
    • Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix
    • [5] Li, J., Zhang, Y.-P., Kirsner, R.S., Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 60:1 (2003), 107–114.
    • (2003) Microsc. Res. Tech. , vol.60 , Issue.1 , pp. 107-114
    • Li, J.1    Zhang, Y.-P.2    Kirsner, R.S.3
  • 6
    • 84888865165 scopus 로고    scopus 로고
    • Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice
    • [6] Bannon, P., et al. Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Dis. Model Mech. 6:6 (2013), 1434–1447.
    • (2013) Dis. Model Mech. , vol.6 , Issue.6 , pp. 1434-1447
    • Bannon, P.1
  • 7
    • 72049119396 scopus 로고    scopus 로고
    • Mouse models of diabetic nephropathy
    • [7] Brosius, F.C. 3rd, et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20:12 (2009), 2503–2512.
    • (2009) J. Am. Soc. Nephrol. , vol.20 , Issue.12 , pp. 2503-2512
    • Brosius, F.C.1
  • 8
    • 84901495147 scopus 로고    scopus 로고
    • Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function
    • [8] Yiu, K.H., Tse, H.F., Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function. Arterioscler. Thromb. Vasc. Biol. 34:6 (2014), 1136–1143.
    • (2014) Arterioscler. Thromb. Vasc. Biol. , vol.34 , Issue.6 , pp. 1136-1143
    • Yiu, K.H.1    Tse, H.F.2
  • 9
    • 9144271032 scopus 로고    scopus 로고
    • Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes
    • [9] Loomans, C.J.M., et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:1 (2004), 195–199.
    • (2004) Diabetes , vol.53 , Issue.1 , pp. 195-199
    • Loomans, C.J.M.1
  • 10
    • 77649294639 scopus 로고    scopus 로고
    • Biomaterials for vascular tissue engineering
    • [10] Ravi, S., Chaikof, E.L., Biomaterials for vascular tissue engineering. Regen. Med. 5:1 (2010), 107–120.
    • (2010) Regen. Med. , vol.5 , Issue.1 , pp. 107-120
    • Ravi, S.1    Chaikof, E.L.2
  • 11
    • 18844401151 scopus 로고    scopus 로고
    • Therapeutic angiogenesis and vasculogenesis for tissue regeneration
    • [11] Madeddu, P., Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp. Physiol. 90:3 (2005), 315–326.
    • (2005) Exp. Physiol. , vol.90 , Issue.3 , pp. 315-326
    • Madeddu, P.1
  • 12
    • 79960674761 scopus 로고    scopus 로고
    • Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix
    • [12] Hanjaya-Putra, D., et al. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:3 (2011), 804–815.
    • (2011) Blood , vol.118 , Issue.3 , pp. 804-815
    • Hanjaya-Putra, D.1
  • 13
    • 84876261425 scopus 로고    scopus 로고
    • Integration and regression of implanted engineered human vascular networks during deep wound healing
    • [13] Hanjaya-Putra, D., et al. Integration and regression of implanted engineered human vascular networks during deep wound healing. Stem Cells Transl. Med. 2:4 (2013), 297–306.
    • (2013) Stem Cells Transl. Med. , vol.2 , Issue.4 , pp. 297-306
    • Hanjaya-Putra, D.1
  • 14
    • 84881118373 scopus 로고    scopus 로고
    • Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix
    • [14] Kusuma, S., et al. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl. Acad. Sci. U. S. A. 110:31 (2013), 12601–12606.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.31 , pp. 12601-12606
    • Kusuma, S.1
  • 15
    • 84923113204 scopus 로고    scopus 로고
    • Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications
    • [15] Kusuma, S., Facklam, A., Gerecht, S., Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications. Stem Cells Dev. 24:4 (2015), 451–458.
    • (2015) Stem Cells Dev. , vol.24 , Issue.4 , pp. 451-458
    • Kusuma, S.1    Facklam, A.2    Gerecht, S.3
  • 16
    • 84864460655 scopus 로고    scopus 로고
    • Microvascular remodeling and wound healing: a role for pericytes
    • [16] Dulmovits, B.M., Herman, I.M., Microvascular remodeling and wound healing: a role for pericytes. Int. J. Biochem. Cell Biol. 44:11 (2012), 1800–1812.
    • (2012) Int. J. Biochem. Cell Biol. , vol.44 , Issue.11 , pp. 1800-1812
    • Dulmovits, B.M.1    Herman, I.M.2
  • 17
    • 84948114253 scopus 로고    scopus 로고
    • Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells
    • [17] Chan, X., et al. Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arterioscler. Thromb. Vasc. Biol. 35:12 (2015), 2677–2685.
    • (2015) Arterioscler. Thromb. Vasc. Biol. , vol.35 , Issue.12 , pp. 2677-2685
    • Chan, X.1
  • 18
    • 84940394988 scopus 로고    scopus 로고
    • Fabrication of 3-dimensional multicellular microvascular structures
    • [18] Barreto-Ortiz, S.F., et al. Fabrication of 3-dimensional multicellular microvascular structures. FASEB J. 29:8 (2015), 3302–3314.
    • (2015) FASEB J. , vol.29 , Issue.8 , pp. 3302-3314
    • Barreto-Ortiz, S.F.1
  • 19
    • 80055109896 scopus 로고    scopus 로고
    • Cellular encapsulation in 3D hydrogels for tissue engineering
    • [19] Khetan, S., Burdick, J., Cellular encapsulation in 3D hydrogels for tissue engineering. J. Vis. Exp., 32, 2009.
    • (2009) J. Vis. Exp. , vol.32
    • Khetan, S.1    Burdick, J.2
  • 20
    • 77951003246 scopus 로고    scopus 로고
    • Tuning hydrogel properties for applications in tissue engineering
    • [20] Khetan, S., Chung, C., Burdick, J.A., Tuning hydrogel properties for applications in tissue engineering. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009 (2009), 2094–2096.
    • (2009) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.2009 , pp. 2094-2096
    • Khetan, S.1    Chung, C.2    Burdick, J.A.3
  • 22
    • 21644463370 scopus 로고    scopus 로고
    • Mouse models of diabetic nephropathy
    • [22] Breyer, M.D., et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 16:1 (2005), 27–45.
    • (2005) J. Am. Soc. Nephrol. , vol.16 , Issue.1 , pp. 27-45
    • Breyer, M.D.1
  • 23
    • 84980332319 scopus 로고    scopus 로고
    • Murine model of wound healing
    • [23] Dunn, L., et al. Murine model of wound healing. J. Vis. Exp., 75, 2013, e50265.
    • (2013) J. Vis. Exp. , vol.75 , pp. e50265
    • Dunn, L.1
  • 24
    • 84920416403 scopus 로고    scopus 로고
    • Transdermal deferoxamine prevents pressure-induced diabetic ulcers
    • [24] Duscher, D., et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc. Natl. Acad. Sci. U. S. A. 112:1 (2015), 94–99.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , Issue.1 , pp. 94-99
    • Duscher, D.1
  • 25
    • 84875020640 scopus 로고    scopus 로고
    • The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model
    • [25] Martinez-Santamaria, L., et al. The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model. Exp. Dermatol 22:3 (2013), 195–201.
    • (2013) Exp. Dermatol , vol.22 , Issue.3 , pp. 195-201
    • Martinez-Santamaria, L.1
  • 26
    • 57349184120 scopus 로고    scopus 로고
    • Streptozotocin-induced diabetic models in mice and rats
    • Chapter 5: p. Unit 5 47
    • [26] Wu, K.K., Huan, Y., Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol., 2008 Chapter 5: p. Unit 5 47.
    • (2008) Curr. Protoc. Pharmacol.
    • Wu, K.K.1    Huan, Y.2
  • 27
    • 84862943235 scopus 로고    scopus 로고
    • Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing
    • [27] Sun, G., et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. U. S. A. 108:52 (2011), 20976–20981.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , Issue.52 , pp. 20976-20981
    • Sun, G.1
  • 28
    • 84941424093 scopus 로고    scopus 로고
    • Acellular hydrogels for regenerative burn wound healing: translation from a porcine model
    • [28] Shen, Y.I., et al. Acellular hydrogels for regenerative burn wound healing: translation from a porcine model. J. Invest Dermatol 135:10 (2015), 2519–2529.
    • (2015) J. Invest Dermatol , vol.135 , Issue.10 , pp. 2519-2529
    • Shen, Y.I.1
  • 29
    • 39049132284 scopus 로고    scopus 로고
    • Self-assembling peptide nanofiber scaffolds accelerate wound healing
    • [29] Schneider, A., Garlick, J.A., Egles, C., Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One, 3(1), 2008, e1410.
    • (2008) PLoS One , vol.3 , Issue.1 , pp. e1410
    • Schneider, A.1    Garlick, J.A.2    Egles, C.3
  • 30
    • 37049030173 scopus 로고    scopus 로고
    • In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37
    • [30] Carretero, M., et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J. Invest Dermatol 128:1 (2008), 223–236.
    • (2008) J. Invest Dermatol , vol.128 , Issue.1 , pp. 223-236
    • Carretero, M.1
  • 31
    • 78649820215 scopus 로고    scopus 로고
    • Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice
    • [31] Marrotte, E.J., et al. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J. Clin. Invest 120:12 (2010), 4207–4219.
    • (2010) J. Clin. Invest , vol.120 , Issue.12 , pp. 4207-4219
    • Marrotte, E.J.1
  • 32
    • 84875254399 scopus 로고    scopus 로고
    • Increased skin inflammation and blood vessel density in human and experimental diabetes
    • [32] Tellechea, A., et al. Increased skin inflammation and blood vessel density in human and experimental diabetes. Int. J. Low. Extrem Wounds 12:1 (2013), 4–11.
    • (2013) Int. J. Low. Extrem Wounds , vol.12 , Issue.1 , pp. 4-11
    • Tellechea, A.1
  • 33
    • 84855954013 scopus 로고    scopus 로고
    • Regulation of endothelial cell activation and angiogenesis by injectable peptide nanofibers
    • [33] Cho, H., et al. Regulation of endothelial cell activation and angiogenesis by injectable peptide nanofibers. Acta Biomater. 8:1 (2012), 154–164.
    • (2012) Acta Biomater. , vol.8 , Issue.1 , pp. 154-164
    • Cho, H.1
  • 34
    • 84938894244 scopus 로고    scopus 로고
    • Nanofiber microenvironment effectively restores angiogenic potential of diabetic endothelial cells
    • [34] Hurley, J.R., et al. Nanofiber microenvironment effectively restores angiogenic potential of diabetic endothelial cells. Adv. Wound Care (New Rochelle) 3:11 (2014), 717–728.
    • (2014) Adv. Wound Care (New Rochelle) , vol.3 , Issue.11 , pp. 717-728
    • Hurley, J.R.1
  • 35
    • 0025074095 scopus 로고
    • Models of epidermal wound healing
    • [35] Sherratt, J.A., Murray, J.D., Models of epidermal wound healing. Proc. Biol. Sci. 241:1300 (1990), 29–36.
    • (1990) Proc. Biol. Sci. , vol.241 , Issue.1300 , pp. 29-36
    • Sherratt, J.A.1    Murray, J.D.2
  • 36
    • 78751623202 scopus 로고    scopus 로고
    • Hyperbolastic modeling of wound healing
    • [36] Tabatabai, M.A., Eby, W.M., Singh, K.P., Hyperbolastic modeling of wound healing. Math. Comput. Model. 53:5–6 (2011), 755–768.
    • (2011) Math. Comput. Model. , vol.53 , Issue.5–6 , pp. 755-768
    • Tabatabai, M.A.1    Eby, W.M.2    Singh, K.P.3
  • 37
    • 0342368721 scopus 로고    scopus 로고
    • Modelling of chronic wound healing dynamics
    • [37] Cukjati, D., et al. Modelling of chronic wound healing dynamics. Med. Biol. Eng. Comput. 38:3 (2000), 339–347.
    • (2000) Med. Biol. Eng. Comput. , vol.38 , Issue.3 , pp. 339-347
    • Cukjati, D.1
  • 38
    • 70349445266 scopus 로고    scopus 로고
    • Macroscopic models for fibroproliferative disorders: a review
    • [38] Fusi, L., Macroscopic models for fibroproliferative disorders: a review. Math. Comput. Model. 50:9–10 (2009), 1474–1494.
    • (2009) Math. Comput. Model. , vol.50 , Issue.9–10 , pp. 1474-1494
    • Fusi, L.1
  • 39
    • 84857480181 scopus 로고    scopus 로고
    • The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources
    • [39] Graham, M.L., et al. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp. Med. 61:4 (2011), 356–360.
    • (2011) Comp. Med. , vol.61 , Issue.4 , pp. 356-360
    • Graham, M.L.1
  • 40
    • 3442876383 scopus 로고    scopus 로고
    • Quantitative and reproducible murine model of excisional wound healing
    • [40] Galiano, R.D., et al. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12:4 (2004), 485–492.
    • (2004) Wound Repair Regen. , vol.12 , Issue.4 , pp. 485-492
    • Galiano, R.D.1
  • 41
    • 84873374025 scopus 로고    scopus 로고
    • The mouse excisional wound splinting model, including applications for stem cell transplantation
    • [41] Wang, X., et al. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat. Protoc. 8:2 (2013), 302–309.
    • (2013) Nat. Protoc. , vol.8 , Issue.2 , pp. 302-309
    • Wang, X.1
  • 42
    • 78349252107 scopus 로고    scopus 로고
    • Limitations of the db/db mouse in translational wound healing research: is the NONcNZO10 polygenic mouse model superior?
    • [42] Fang, R.C., et al. Limitations of the db/db mouse in translational wound healing research: is the NONcNZO10 polygenic mouse model superior?. Wound Repair Regen. 18:6 (2010), 605–613.
    • (2010) Wound Repair Regen. , vol.18 , Issue.6 , pp. 605-613
    • Fang, R.C.1
  • 43
    • 67649170378 scopus 로고    scopus 로고
    • Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells
    • [43] Zou, J., et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:1 (2009), 97–110.
    • (2009) Cell Stem Cell , vol.5 , Issue.1 , pp. 97-110
    • Zou, J.1
  • 44
    • 84881186856 scopus 로고    scopus 로고
    • Genetic and epigenetic variations in iPSCs: potential causes and implications for application
    • [44] Liang, G., Zhang, Y., Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13:2 (2013), 149–159.
    • (2013) Cell Stem Cell , vol.13 , Issue.2 , pp. 149-159
    • Liang, G.1    Zhang, Y.2
  • 45
    • 84935874558 scopus 로고    scopus 로고
    • Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications
    • [45] Rajasekar, P., et al. Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J. Diabetes Res., 2015, 2015, 436879.
    • (2015) J. Diabetes Res. , vol.2015 , pp. 436879
    • Rajasekar, P.1
  • 46
    • 84894256030 scopus 로고    scopus 로고
    • Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing
    • [46] Martino, M.M., et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343:6173 (2014), 885–888.
    • (2014) Science , vol.343 , Issue.6173 , pp. 885-888
    • Martino, M.M.1
  • 47
    • 0031791075 scopus 로고    scopus 로고
    • The role of apoptosis in wound healing
    • [47] Greenhalgh, D.G., The role of apoptosis in wound healing. Int. J. Biochem. Cell Biol. 30:9 (1998), 1019–1030.
    • (1998) Int. J. Biochem. Cell Biol. , vol.30 , Issue.9 , pp. 1019-1030
    • Greenhalgh, D.G.1
  • 48
    • 40849094515 scopus 로고    scopus 로고
    • Foreign body reaction to biomaterials
    • [48] Anderson, J.M., Rodriguez, A., Chang, D.T., Foreign body reaction to biomaterials. Semin. Immunol. 20:2 (2008), 86–100.
    • (2008) Semin. Immunol. , vol.20 , Issue.2 , pp. 86-100
    • Anderson, J.M.1    Rodriguez, A.2    Chang, D.T.3
  • 49
    • 84893738793 scopus 로고    scopus 로고
    • Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention
    • [49] Li, L., et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35:12 (2014), 3903–3917.
    • (2014) Biomaterials , vol.35 , Issue.12 , pp. 3903-3917
    • Li, L.1
  • 50
    • 54949155201 scopus 로고    scopus 로고
    • Macrophage phenotype as a determinant of biologic scaffold remodeling
    • [50] Badylak, S.F., et al. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14:11 (2008), 1835–1842.
    • (2008) Tissue Eng. Part A , vol.14 , Issue.11 , pp. 1835-1842
    • Badylak, S.F.1
  • 51
    • 0036975452 scopus 로고    scopus 로고
    • Hyperinsulinemia and oxidative stress
    • [51] Kyselova, P., et al. Hyperinsulinemia and oxidative stress. Physiol. Res. 51:6 (2002), 591–595.
    • (2002) Physiol. Res. , vol.51 , Issue.6 , pp. 591-595
    • Kyselova, P.1
  • 52
    • 70649107812 scopus 로고    scopus 로고
    • Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells
    • [52] Yan, J., et al. Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells. J. Vasc. Surg. 50:6 (2009), 1412–1422.
    • (2009) J. Vasc. Surg. , vol.50 , Issue.6 , pp. 1412-1422
    • Yan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.