메뉴 건너뛰기




Volumn 9, Issue , 2016, Pages 203-222

Fabrication and Operation of Paper-Based Analytical Devices

Author keywords

Electrochemical detection; Flow control; Lamination; Microfluidics; Point of care; PADs

Indexed keywords

ANALYTIC EQUIPMENT; CHEMICAL DETECTION; FABRICATION; FLOW CONTROL;

EID: 84975505172     PISSN: 19361327     EISSN: 19361335     Source Type: Book Series    
DOI: 10.1146/annurev-anchem-071015-041714     Document Type: Review
Times cited : (75)

References (135)
  • 1
    • 77955157007 scopus 로고    scopus 로고
    • Routine use of point-of-care tests: Usefulness and application in clinical microbiology
    • Clerc O, Greub G. 2010. Routine use of point-of-care tests: usefulness and application in clinical microbiology. Clin. Microbiol. Infect. 16:1054-61
    • (2010) Clin. Microbiol. Infect. , vol.16 , pp. 1054-1061
    • Clerc, O.1    Greub, G.2
  • 2
    • 84878101085 scopus 로고    scopus 로고
    • Paper-based microfluidic point-of-care diagnostic devices
    • Yetisen AK, AkramMS, Lowe CR. 2013. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210-51
    • (2013) Lab Chip , vol.13 , pp. 2210-2251
    • Yetisen, A.K.1    Akram, M.S.2    Lowe, C.R.3
  • 3
    • 57849115714 scopus 로고    scopus 로고
    • Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey
    • Posthuma-Trumpie GA, Korf J, van Amerongen A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393:569-82
    • (2009) Anal. Bioanal. Chem. , vol.393 , pp. 569-582
    • Posthuma-Trumpie, G.A.1    Korf, J.2    Van Amerongen, A.3
  • 5
    • 51949106700 scopus 로고    scopus 로고
    • Inkjet-printed microfluidic multianalyte chemical sensing paper
    • Abe K, Suzuki K, Citterio D. 2008. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80:6928-34
    • (2008) Anal. Chem. , vol.80 , pp. 6928-6934
    • Abe, K.1    Suzuki, K.2    Citterio, D.3
  • 6
    • 42949095976 scopus 로고    scopus 로고
    • Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper
    • Bruzewicz DA, Reches M, Whitesides GM. 2008. Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal. Chem. 80:3387-92
    • (2008) Anal. Chem. , vol.80 , pp. 3387-3392
    • Bruzewicz, D.A.1    Reches, M.2    Whitesides, G.M.3
  • 8
    • 78649884818 scopus 로고    scopus 로고
    • A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing
    • Dungchai W, Chailapakul O, Henry CS. 2011. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77-82
    • (2011) Analyst , vol.136 , pp. 77-82
    • Dungchai, W.1    Chailapakul, O.2    Henry, C.S.3
  • 10
    • 84922719915 scopus 로고    scopus 로고
    • A simple method for patterning poly (dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps
    • Dornelas KL, Dossi N, Piccin E. 2015. A simple method for patterning poly (dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Anal. Chem. Acta 858:82-90
    • (2015) Anal. Chem. Acta , vol.858 , pp. 82-90
    • Dornelas, K.L.1    Dossi, N.2    Piccin, E.3
  • 11
    • 68849107869 scopus 로고    scopus 로고
    • Understandingwax printing: A simple micropatterning process for paper-based microfluidics
    • Carrilho E,Martinez AW, Whitesides GM. 2009. Understandingwax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 81:7091-95
    • (2009) Anal. Chem. , vol.81 , pp. 7091-7095
    • Carrilho, E.1    Martinez, A.W.2    Whitesides, G.M.3
  • 12
    • 68849085937 scopus 로고    scopus 로고
    • Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay
    • Lu Y, Shi W, Jiang L, Qin J, Lin B. 2009. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497-500
    • (2009) Electrophoresis , vol.30 , pp. 1497-1500
    • Lu, Y.1    Shi, W.2    Jiang, L.3    Qin, J.4    Lin, B.5
  • 13
    • 80053563914 scopus 로고    scopus 로고
    • Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping
    • Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W. 2011. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85:2587-93
    • (2011) Talanta , vol.85 , pp. 2587-2593
    • Songjaroen, T.1    Dungchai, W.2    Chailapakul, O.3    Laiwattanapaisal, W.4
  • 14
    • 84906875691 scopus 로고    scopus 로고
    • A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays
    • de Tarso Garcia P, Cardoso TMG, Garcia CD, Carrilho E, ColtroWKT. 2014. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Adv. 4:37637-44
    • (2014) RSC Adv. , vol.4 , pp. 37637-37644
    • De Tarso Garcia, P.1    Cardoso, T.M.G.2    Garcia, C.D.3    Carrilho, E.4    Coltro, W.K.T.5
  • 15
    • 84911431415 scopus 로고    scopus 로고
    • Colored wax-printed timers for two-dimensional and three-dimensional assays on paper-based devices
    • Weng CH, Chen MY, Shen CH, Yang RJ. 2014. Colored wax-printed timers for two-dimensional and three-dimensional assays on paper-based devices. Biomicrofluidics 8:066502
    • (2014) Biomicrofluidics , vol.8 , pp. 066502
    • Weng, C.H.1    Chen, M.Y.2    Shen, C.H.3    Yang, R.J.4
  • 16
    • 84894233756 scopus 로고    scopus 로고
    • Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing
    • Zhang Y, Zhou C, Nie J, Le S, Qin Q, et al. 2014. Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal. Chem. 86:2005-12
    • (2014) Anal. Chem. , vol.86 , pp. 2005-2012
    • Zhang, Y.1    Zhou, C.2    Nie, J.3    Le, S.4    Qin, Q.5
  • 17
    • 84864612123 scopus 로고    scopus 로고
    • Low-cost fabrication of paper-based microfluidic devices by one-step plotting
    • Nie J, Zhang Y, Lin L, Zhou C, Li S, et al. 2012. Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal. Chem. 84:6331-35
    • (2012) Anal. Chem. , vol.84 , pp. 6331-6335
    • Nie, J.1    Zhang, Y.2    Lin, L.3    Zhou, C.4    Li, S.5
  • 19
    • 84878742533 scopus 로고    scopus 로고
    • Inkjet printing: An integrated and green chemical approach to microfluidic paper-based analytical devices
    • Maejima K, Tomikawa S, Suzuki K, Citterio D. 2013. Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv. 3:9258-63
    • (2013) RSC Adv. , vol.3 , pp. 9258-9263
    • Maejima, K.1    Tomikawa, S.2    Suzuki, K.3    Citterio, D.4
  • 20
    • 84873363148 scopus 로고    scopus 로고
    • Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning
    • He Q, Ma C, Hu X, Chen H. 2013. Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal. Chem. 85:1327-31
    • (2013) Anal. Chem. , vol.85 , pp. 1327-1331
    • He, Q.1    Ma, C.2    Hu, X.3    Chen, H.4
  • 21
    • 84879952929 scopus 로고    scopus 로고
    • Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper
    • Glavan AC, Martinez RV, Maxwell EJ, Subramaniam AB, Nunes RM, et al. 2013. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 13:2922-30
    • (2013) Lab Chip , vol.13 , pp. 2922-2930
    • Glavan, A.C.1    Martinez, R.V.2    Maxwell, E.J.3    Subramaniam, A.B.4    Nunes, R.M.5
  • 22
    • 84906075000 scopus 로고    scopus 로고
    • Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay
    • Cai L, Wang Y, Wu Y, Xu C, ZhongM, et al. 2014. Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay. Analyst 139:4593-98
    • (2014) Analyst , vol.139 , pp. 4593-4598
    • Cai, L.1    Wang, Y.2    Wu, Y.3    Xu, C.4    Zhong, M.5
  • 23
    • 84907994624 scopus 로고    scopus 로고
    • A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask
    • Cai L, Xu C, Lin S, Luo J, Wu M, Yang F. 2014. A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask. Biomicrofluidics 8:056504
    • (2014) Biomicrofluidics , vol.8 , pp. 056504
    • Cai, L.1    Xu, C.2    Lin, S.3    Luo, J.4    Wu, M.5    Yang, F.6
  • 24
    • 77957860832 scopus 로고    scopus 로고
    • Inkjet-printed paperfluidic immuno-chemical sensing device
    • Abe K, Kotera K, Suzuki K, Citterio D. 2010. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal. BioAnal. Chem. 398:885-93
    • (2010) Anal. BioAnal. Chem. , vol.398 , pp. 885-893
    • Abe, K.1    Kotera, K.2    Suzuki, K.3    Citterio, D.4
  • 25
    • 78650406348 scopus 로고    scopus 로고
    • Flexographically printed fluidic structures in paper
    • Olkkonen J, Lehtinen K, Erho T. 2010. Flexographically printed fluidic structures in paper. Anal. Chem. 82:10246-50
    • (2010) Anal. Chem. , vol.82 , pp. 10246-10250
    • Olkkonen, J.1    Lehtinen, K.2    Erho, T.3
  • 26
    • 84908288040 scopus 로고    scopus 로고
    • Laser-induced photo-polymerisation for creation of paper-based fluidic devices
    • Sones CL, Katis IN, He PJW,Mills B, NamiqMF, et al. 2014. Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab Chip 14:4567-74
    • (2014) Lab Chip , vol.14 , pp. 4567-4574
    • Sones, C.L.1    Katis, I.N.2    He, P.J.W.3    Mills, B.4    Namiq, M.F.5
  • 27
    • 84910156737 scopus 로고    scopus 로고
    • One-step polymer screenprinting for microfluidic paper-based analytical device (μPAD) fabrication
    • Sameenoi Y, Nongkai PN, Nouanthavong S, Henry CS, NacaprichaD. 2014. One-step polymer screenprinting for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 139:6580-88
    • (2014) Analyst , vol.139 , pp. 6580-6588
    • Sameenoi, Y.1    Nongkai, P.N.2    Nouanthavong, S.3    Henry, C.S.4    Nacapricha, D.5
  • 28
    • 84914680536 scopus 로고    scopus 로고
    • Paper-based microfluidics: Fabrication technique and dynamics of capillary-driven surface flow
    • Songok J, Tuominen M, Teisala H, Haapanen J, Mäkelä J, et al. 2014. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow. ACS Appl. Mater. Interfaces 6:20060-66
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 20060-20066
    • Songok, J.1    Tuominen, M.2    Teisala, H.3    Haapanen, J.4    Mäkelä, J.5
  • 29
    • 84884909231 scopus 로고    scopus 로고
    • Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water
    • Nurak T, Praphairaksit N, Chailapakul O. 2013. Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta 114:291-96
    • (2013) Talanta , vol.114 , pp. 291-296
    • Nurak, T.1    Praphairaksit, N.2    Chailapakul, O.3
  • 30
    • 84884414238 scopus 로고    scopus 로고
    • Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing
    • Sousa MP, Mano JF. 2013. Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose 20:2185-90
    • (2013) Cellulose , vol.20 , pp. 2185-2190
    • Sousa, M.P.1    Mano, J.F.2
  • 31
    • 57449121168 scopus 로고    scopus 로고
    • Paper-based microfluidic devices by plasma treatment
    • Li X, Tian J, Nguyen T, Shen W. 2008. Paper-based microfluidic devices by plasma treatment. Anal. Chem. 80:9131-34
    • (2008) Anal. Chem. , vol.80 , pp. 9131-9134
    • Li, X.1    Tian, J.2    Nguyen, T.3    Shen, W.4
  • 32
    • 75749107841 scopus 로고    scopus 로고
    • Fabrication of paper-based microfluidic sensors by printing
    • Li X, Tian J, Garnier G, Shen W. 2010. Fabrication of paper-based microfluidic sensors by printing. Colloids Surf. B 76:564-70
    • (2010) Colloids Surf. B , vol.76 , pp. 564-570
    • Li, X.1    Tian, J.2    Garnier, G.3    Shen, W.4
  • 34
    • 84890537223 scopus 로고    scopus 로고
    • Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices
    • Chen B, Kwong P,GuptaM. 2013. Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices. ACS Appl. Mater. Interfaces 5:12701-7
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 12701-12707
    • Chen, B.1    Kwong, P.2    Gupta, M.3
  • 35
  • 36
    • 84894244705 scopus 로고    scopus 로고
    • Inkjet patterned superhydrophobic paper for openair surface microfluidic devices
    • Elsharkawy M, Schutzius TM, Megaridis CM. 2014. Inkjet patterned superhydrophobic paper for openair surface microfluidic devices. Lab Chip 14:1168-75
    • (2014) Lab Chip , vol.14 , pp. 1168-1175
    • Elsharkawy, M.1    Schutzius, T.M.2    Megaridis, C.M.3
  • 37
    • 84928946252 scopus 로고    scopus 로고
    • Reagent pencils: A new technique for solvent-free deposition of reagents onto paper-based microfluidic devices
    • Mitchell HT,Noxon IC, Chaplan CA, Carlton SJ, Liu CH, et al. 2015. Reagent pencils: A new technique for solvent-free deposition of reagents onto paper-based microfluidic devices. Lab Chip 15:2213-20
    • (2015) Lab Chip , vol.15 , pp. 2213-2220
    • Mitchell, H.T.1    Noxon, I.C.2    Chaplan, C.A.3    Carlton, S.J.4    Liu, C.H.5
  • 38
    • 84869426054 scopus 로고    scopus 로고
    • Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations
    • Kwong P,GuptaM. 2012. Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations. Anal. Chem. 84:10129-35
    • (2012) Anal. Chem. , vol.84 , pp. 10129-10135
    • Kwong, P.1    Gupta, M.2
  • 39
    • 84898927317 scopus 로고    scopus 로고
    • Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications
    • Demirel G, Babur E. 2014. Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst 139:2326-31
    • (2014) Analyst , vol.139 , pp. 2326-2331
    • Demirel, G.1    Babur, E.2
  • 40
    • 84924964780 scopus 로고    scopus 로고
    • Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm R
    • Yu L, Shi ZZ. 2015. Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm R . Lab Chip 15:1642-45
    • (2015) Lab Chip , vol.15 , pp. 1642-1645
    • Yu, L.1    Shi, Z.Z.2
  • 41
    • 84908273462 scopus 로고    scopus 로고
    • Paper-based colorimetric enzyme linked immunosorbent assay fabricated by laser induced forward transfer
    • Katis IN, Holloway JA, Madsen J, Faust SN, Garbis SD, et al. 2014. Paper-based colorimetric enzyme linked immunosorbent assay fabricated by laser induced forward transfer. Biomicrofluidics 8:036502
    • (2014) Biomicrofluidics , vol.8 , pp. 036502
    • Katis, I.N.1    Holloway, J.A.2    Madsen, J.3    Faust, S.N.4    Garbis, S.D.5
  • 42
    • 84906860984 scopus 로고    scopus 로고
    • Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand
    • Kao PK, Hsu CC. 2014. Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand. Anal. Chem. 86:8757-62
    • (2014) Anal. Chem. , vol.86 , pp. 8757-8762
    • Kao, P.K.1    Hsu, C.C.2
  • 44
    • 79952177518 scopus 로고    scopus 로고
    • Laser-treated hydrophobic paper: An inexpensive microfluidic platform
    • Chitnis G, Ding Z, Chang CL, Savran CA, Ziaie B. 2011. Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161-65
    • (2011) Lab Chip , vol.11 , pp. 1161-1165
    • Chitnis, G.1    Ding, Z.2    Chang, C.L.3    Savran, C.A.4    Ziaie, B.5
  • 46
    • 84861122286 scopus 로고    scopus 로고
    • Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection
    • Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P. 2012. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 84:4574-79
    • (2012) Anal. Chem. , vol.84 , pp. 4574-4579
    • Fu, E.1    Liang, T.2    Spicar-Mihalic, P.3    Houghtaling, J.4    Ramachandran, S.5    Yager, P.6
  • 47
    • 84870916861 scopus 로고    scopus 로고
    • One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices
    • Nie J, Liang Y, Zhang Y, Le S, Li D, Zhang S. 2013. One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138:671-76
    • (2013) Analyst , vol.138 , pp. 671-676
    • Nie, J.1    Liang, Y.2    Zhang, Y.3    Le, S.4    Li, D.5    Zhang, S.6
  • 48
    • 84901745640 scopus 로고    scopus 로고
    • Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection
    • Mu X, Zhang L, Chang S, CuiW, Zheng Z. 2014. Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal. Chem. 86:5338-44
    • (2014) Anal. Chem. , vol.86 , pp. 5338-5344
    • Mu, X.1    Zhang, L.2    Chang, S.3    Cui, W.4    Zheng, Z.5
  • 49
    • 84881237670 scopus 로고    scopus 로고
    • Laminated paper-based analytical devices (LPAD): Fabrication, characterization, and assays
    • Cassano CL, Fan ZH. 2013. Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluid. Nanofluid. 15:173-81
    • (2013) Microfluid. Nanofluid. , vol.15 , pp. 173-181
    • Cassano, C.L.1    Fan, Z.H.2
  • 50
    • 84887711503 scopus 로고    scopus 로고
    • Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum
    • Liu W, Cassano CL, Xu X, Fan ZH. 2013. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal. Chem. 85:10270-76
    • (2013) Anal. Chem. , vol.85 , pp. 10270-10276
    • Liu, W.1    Cassano, C.L.2    Xu, X.3    Fan, Z.H.4
  • 52
    • 84903730331 scopus 로고    scopus 로고
    • Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels
    • Giokas DL, Tsogas GZ, Vlessidis AG. 2014. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels. Anal. Chem. 86:6202-7
    • (2014) Anal. Chem. , vol.86 , pp. 6202-6207
    • Giokas, D.L.1    Tsogas, G.Z.2    Vlessidis, A.G.3
  • 53
    • 84882921306 scopus 로고    scopus 로고
    • Quantifying analytes in paper-based microfluidic devices without using external electronic readers
    • Lewis GG, DiTucci MJ, Phillips ST. 2012. Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem. Int. Ed. Engl. 124:12879-82
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.124 , pp. 12879-12882
    • Lewis, G.G.1    DiTucci, M.J.2    Phillips, S.T.3
  • 54
    • 84886872511 scopus 로고    scopus 로고
    • DNA detection using origami paper analytical devices
    • Scida K, Li B, Ellington AD, Crooks RM. 2013. DNA detection using origami paper analytical devices. Anal. Chem. 85:9713-20
    • (2013) Anal. Chem. , vol.85 , pp. 9713-9720
    • Scida, K.1    Li, B.2    Ellington, A.D.3    Crooks, R.M.4
  • 55
    • 58149378331 scopus 로고    scopus 로고
    • Three-dimensional microfluidic devices fabricated in layered paper and tape
    • Martinez AW, Phillips ST, Whitesides GM. 2008. Three-dimensional microfluidic devices fabricated in layered paper and tape. PNAS 105:19606-11
    • (2008) PNAS , vol.105 , pp. 19606-19611
    • Martinez, A.W.1    Phillips, S.T.2    Whitesides, G.M.3
  • 56
    • 84904632121 scopus 로고    scopus 로고
    • Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods
    • Thuo MM, Martinez RV, Lan WJ, Liu X, Barber J, et al. 2014. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem. Mater. 26:4230-37
    • (2014) Chem. Mater. , vol.26 , pp. 4230-4237
    • Thuo, M.M.1    Martinez, R.V.2    Lan, W.J.3    Liu, X.4    Barber, J.5
  • 57
    • 84863687739 scopus 로고    scopus 로고
    • High throughput method for prototyping threedimensional, paper-based microfluidic devices
    • Lewis GG, DiTucci MJ, Baker MS, Phillips ST. 2012. High throughput method for prototyping threedimensional, paper-based microfluidic devices. Lab Chip 12:2630-33
    • (2012) Lab Chip , vol.12 , pp. 2630-2633
    • Lewis, G.G.1    DiTucci, M.J.2    Baker, M.S.3    Phillips, S.T.4
  • 58
    • 84875791395 scopus 로고    scopus 로고
    • Paper and toner three-dimensional fluidic devices: Programming fluid flow to improve point-of-care diagnostics
    • Schilling KM, Jauregui D, Martinez AW. 2013. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab Chip 13:628-31
    • (2013) Lab Chip , vol.13 , pp. 628-631
    • Schilling, K.M.1    Jauregui, D.2    Martinez, A.W.3
  • 59
    • 84908053114 scopus 로고    scopus 로고
    • Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits
    • Kalish B, Tsutsui H. 2014. Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits. Lab Chip 14:4354-61
    • (2014) Lab Chip , vol.14 , pp. 4354-4361
    • Kalish, B.1    Tsutsui, H.2
  • 60
    • 80455129421 scopus 로고    scopus 로고
    • Three-dimensional paper microfluidic devices assembled using the principles of origami
    • Liu H, Crooks RM. 2011. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133:17564-66
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 17564-17566
    • Liu, H.1    Crooks, R.M.2
  • 61
    • 84888374350 scopus 로고    scopus 로고
    • Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine
    • Sechi D, Greer B, Johnson J, Hashemi N. 2013. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal. Chem. 85:10733-37
    • (2013) Anal. Chem. , vol.85 , pp. 10733-10737
    • Sechi, D.1    Greer, B.2    Johnson, J.3    Hashemi, N.4
  • 62
    • 82555176812 scopus 로고    scopus 로고
    • A low cost point-ofcare viscous sample preparation device for molecular diagnosis in the developing world; An example of microfluidic origami
    • Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Böhringer KF. 2012. A low cost point-ofcare viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12:174-81
    • (2012) Lab Chip , vol.12 , pp. 174-181
    • Govindarajan, A.V.1    Ramachandran, S.2    Vigil, G.D.3    Yager, P.4    Böhringer, K.F.5
  • 63
    • 84866994165 scopus 로고    scopus 로고
    • Aptamer-based origami paper analytical device for electrochemical detection of adenosine
    • Liu H, Xiang Y, Lu Y, Crooks RM. 2012. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. Engl. 124:7031-34
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.124 , pp. 7031-7034
    • Liu, H.1    Xiang, Y.2    Lu, Y.3    Crooks, R.M.4
  • 64
    • 84859959638 scopus 로고    scopus 로고
    • Electrochemical immunoassay on a 3D microfluidic paperbased device
    • Zang D, Ge L, Yan M, Song X, Yu J. 2012. Electrochemical immunoassay on a 3D microfluidic paperbased device. Chem. Commun. 48:4683-85
    • (2012) Chem. Commun. , vol.48 , pp. 4683-4685
    • Zang, D.1    Ge, L.2    Yan, M.3    Song, X.4    Yu, J.5
  • 65
    • 84865267213 scopus 로고    scopus 로고
    • Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing
    • Lu J, Ge S, Ge L, YanM, Yu J. 2012. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim. Acta 80:334-41
    • (2012) Electrochim. Acta , vol.80 , pp. 334-341
    • Lu, J.1    Ge, S.2    Ge, L.3    Yan, M.4    Yu, J.5
  • 66
    • 81355161670 scopus 로고    scopus 로고
    • Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing
    • Ge L, Yan J, Song X, Yan M, Ge S, Yu J. 2012. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024-31
    • (2012) Biomaterials , vol.33 , pp. 1024-1031
    • Ge, L.1    Yan, J.2    Song, X.3    Yan, M.4    Ge, S.5    Yu, J.6
  • 67
    • 84859621676 scopus 로고    scopus 로고
    • Paper-based electrochemiluminescent 3Dimmunodevice for lab-on-paper, specific, and sensitive point-of-care testing
    • Yan J,Ge L, Song X, Yan M, Ge S, Yu J. 2012. Paper-based electrochemiluminescent 3Dimmunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem. Eur. J. 18:4938-45
    • (2012) Chem. Eur. J. , vol.18 , pp. 4938-4945
    • Yan, J.1    Ge, L.2    Song, X.3    Yan, M.4    Ge, S.5    Yu, J.6
  • 68
    • 84872716444 scopus 로고    scopus 로고
    • A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative
    • Yan J, Yan M, Ge L, Yu J, Ge S, Huang J. 2013. A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. Chem. Commun. 49:1383-85
    • (2013) Chem. Commun. , vol.49 , pp. 1383-1385
    • Yan, J.1    Yan, M.2    Ge, L.3    Yu, J.4    Ge, S.5    Huang, J.6
  • 69
    • 84899901580 scopus 로고    scopus 로고
    • Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper
    • Li X, Liu X. 2014. Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid. Nanofluid. 16:819-27
    • (2014) Microfluid. Nanofluid. , vol.16 , pp. 819-827
    • Li, X.1    Liu, X.2
  • 70
    • 84902593701 scopus 로고    scopus 로고
    • Three-dimensional wax patterning of paper fluidic devices
    • Renault C, Koehne J, Ricco AJ, Crooks RM. 2014. Three-dimensional wax patterning of paper fluidic devices. Langmuir 30:7030-36
    • (2014) Langmuir , vol.30 , pp. 7030-7036
    • Renault, C.1    Koehne, J.2    Ricco, A.J.3    Crooks, R.M.4
  • 71
    • 84922571415 scopus 로고    scopus 로고
    • Toward instrument-free digital measurements: A three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination
    • Jeong SG, Lee SH, Choi CH, Kim J, Lee CS. 2015. Toward instrument-free digital measurements: A three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination. Lab Chip 15:1188-94
    • (2015) Lab Chip , vol.15 , pp. 1188-1194
    • Jeong, S.G.1    Lee, S.H.2    Choi, C.H.3    Kim, J.4    Lee, C.S.5
  • 72
    • 75749113741 scopus 로고    scopus 로고
    • Diagnostics for the developing world: Microfluidic paper-based analytical devices
    • Martinez AW, Phillips ST, Whitesides GM, Carrilho E. 2009. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:3-10
    • (2009) Anal. Chem. , vol.82 , pp. 3-10
    • Martinez, A.W.1    Phillips, S.T.2    Whitesides, G.M.3    Carrilho, E.4
  • 75
    • 79951724086 scopus 로고    scopus 로고
    • A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination
    • Yu J, Wang S, Ge L, Ge S. 2011. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens. Bioelectron. 26:3284-89
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 3284-3289
    • Yu, J.1    Wang, S.2    Ge, L.3    Ge, S.4
  • 76
    • 84900524901 scopus 로고    scopus 로고
    • Evaluation and application of a paper-based device for the determination of reactive phosphate in soil solution
    • Jayawardane BM, Wongwilai W, Grudpan K, Kolev SD, Heaven MW, et al. 2014. Evaluation and application of a paper-based device for the determination of reactive phosphate in soil solution. J. Environ. Qual. 43:1081-85
    • (2014) J. Environ. Qual. , vol.43 , pp. 1081-1085
    • Jayawardane, B.M.1    Wongwilai, W.2    Grudpan, K.3    Kolev, S.D.4    Heaven, M.W.5
  • 78
    • 84922141391 scopus 로고    scopus 로고
    • Paper based thin layer coulometric sensor for halide determination
    • Cuartero M, Crespo GA, Bakker E. 2015. Paper based thin layer coulometric sensor for halide determination. Anal. Chem. 87:1981-90
    • (2015) Anal. Chem. , vol.87 , pp. 1981-1990
    • Cuartero, M.1    Crespo, G.A.2    Bakker, E.3
  • 80
    • 77956305241 scopus 로고    scopus 로고
    • Visualization and measurement of flow in two-dimensional paper networks
    • Kauffman P, Fu E, Lutz B, Yager P. 2010. Visualization and measurement of flow in two-dimensional paper networks. Lab Chip 10:2614-17
    • (2010) Lab Chip , vol.10 , pp. 2614-2617
    • Kauffman, P.1    Fu, E.2    Lutz, B.3    Yager, P.4
  • 81
    • 84928969199 scopus 로고    scopus 로고
    • Raman characterization of nanoparticle transport in microfluidic paper-based analytical devices (μPADs)
    • Lahr RH, Wallace GC, Vikesland PJ. 2015. Raman characterization of nanoparticle transport in microfluidic paper-based analytical devices (μPADs). ACS Appl. Mater. Interfaces 7:9139-46
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 9139-9146
    • Lahr, R.H.1    Wallace, G.C.2    Vikesland, P.J.3
  • 82
    • 84928944821 scopus 로고    scopus 로고
    • Rational design of capillary-driven flows for paper-based microfluidics
    • Elizalde E, Urteaga R, Berli CL. 2015. Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15:2173-80
    • (2015) Lab Chip , vol.15 , pp. 2173-2180
    • Elizalde, E.1    Urteaga, R.2    Berli, C.L.3
  • 83
    • 77949868628 scopus 로고    scopus 로고
    • Controlled reagent transport in disposable 2D paper networks
    • Fu E, Lutz B, Kauffman P, Yager P. 2010. Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918-20
    • (2010) Lab Chip , vol.10 , pp. 918-920
    • Fu, E.1    Lutz, B.2    Kauffman, P.3    Yager, P.4
  • 84
    • 84868580330 scopus 로고    scopus 로고
    • Creating fast flow channels in paper fluidic devices to control timing of sequential reactions
    • Jahanshahi-Anbuhi S, Chavan P, Sicard C, Leung V, Hossain SZ, et al. 2012. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 12:5079-85
    • (2012) Lab Chip , vol.12 , pp. 5079-5085
    • Jahanshahi-Anbuhi, S.1    Chavan, P.2    Sicard, C.3    Leung, V.4    Hossain, S.Z.5
  • 85
    • 84925002985 scopus 로고    scopus 로고
    • Triboelectric effect as a new strategy for sealing and controlling the flow in paper-based devices
    • da Silva ET, SanthiagoM, de Souza FR, et al. 2015. Triboelectric effect as a new strategy for sealing and controlling the flow in paper-based devices. Lab Chip 15:1651-55
    • (2015) Lab Chip , vol.15 , pp. 1651-1655
    • Da Silva, E.T.1    Santhiago, M.2    De Souza, F.R.3
  • 87
    • 84924254695 scopus 로고    scopus 로고
    • A versatile valving toolkit for automating fluidic operations in paper microfluidic devices
    • Toley BJ, Wang JA, GuptaM, Buser JR, Lafleur LK, et al. 2015. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15:1432-44
    • (2015) Lab Chip , vol.15 , pp. 1432-1444
    • Toley, B.J.1    Wang, J.A.2    Gupta, M.3    Buser, J.R.4    Lafleur, L.K.5
  • 88
    • 84881062373 scopus 로고    scopus 로고
    • Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics
    • Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P. 2013. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:2840-47
    • (2013) Lab Chip , vol.13 , pp. 2840-2847
    • Lutz, B.1    Liang, T.2    Fu, E.3    Ramachandran, S.4    Kauffman, P.5    Yager, P.6
  • 89
    • 77952537539 scopus 로고    scopus 로고
    • Metering the capillary-driven flow of fluids in paper-based microfluidic devices
    • Noh H, Phillips ST. 2010. Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal. Chem. 82:4181-87
    • (2010) Anal. Chem. , vol.82 , pp. 4181-4187
    • Noh, H.1    Phillips, S.T.2
  • 90
    • 77957316195 scopus 로고    scopus 로고
    • Fluidic timers for time-dependent, point-of-care assays on paper
    • NohH, Phillips ST. 2010. Fluidic timers for time-dependent, point-of-care assays on paper. Anal. Chem. 82:8071-78
    • (2010) Anal. Chem. , vol.82 , pp. 8071-8078
    • Noh, H.1    Phillips, S.T.2
  • 92
    • 84864266777 scopus 로고    scopus 로고
    • A fluidic diode, valves, and a sequentialloading circuit fabricated on layered paper
    • Chen H, Cogswell J, Anagnostopoulos C, Faghri M. 2012. A fluidic diode, valves, and a sequentialloading circuit fabricated on layered paper. Lab Chip 12:2909-13
    • (2012) Lab Chip , vol.12 , pp. 2909-2913
    • Chen, H.1    Cogswell, J.2    Anagnostopoulos, C.3    Faghri, M.4
  • 94
    • 84881176762 scopus 로고    scopus 로고
    • An inkjet-printed electrowetting valve for paper-fluidic sensors
    • Koo CK, He F, Nugen SR. 2013. An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst 138:4998-5004
    • (2013) Analyst , vol.138 , pp. 4998-5004
    • Koo, C.K.1    He, F.2    Nugen, S.R.3
  • 95
    • 84889071523 scopus 로고    scopus 로고
    • Dissolvable bridges for manipulating fluid volumes in paper networks
    • Houghtaling J, Liang T, Thiessen G, Fu E. 2013. Dissolvable bridges for manipulating fluid volumes in paper networks. Anal. Chem. 85:11201-4
    • (2013) Anal. Chem. , vol.85 , pp. 11201-11204
    • Houghtaling, J.1    Liang, T.2    Thiessen, G.3    Fu, E.4
  • 96
    • 84878641593 scopus 로고    scopus 로고
    • Magnetic timing valves for fluid control in paper-based microfluidics
    • Li X, Zwanenburg P, Liu X. 2013. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 13:2609-14
    • (2013) Lab Chip , vol.13 , pp. 2609-2614
    • Li, X.1    Zwanenburg, P.2    Liu, X.3
  • 97
    • 84858315509 scopus 로고    scopus 로고
    • Two-dimensional paper networks: Programmable fluidic disconnects for multi-step processes in shaped paper
    • Lutz BR, Trinh P, Ball C, Fu E, Yager P. 2011. Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 11:4274-78
    • (2011) Lab Chip , vol.11 , pp. 4274-4278
    • Lutz, B.R.1    Trinh, P.2    Ball, C.3    Fu, E.4    Yager, P.5
  • 98
    • 84870227903 scopus 로고    scopus 로고
    • Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing
    • ApiluxA,Ukita Y, Chikae M, Chailapakul O, Takamura Y. 2013. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126-35
    • (2013) Lab Chip , vol.13 , pp. 126-135
    • Apilux, A.1    Ukita, Y.2    Chikae, M.3    Chailapakul, O.4    Takamura, Y.5
  • 99
    • 84903718176 scopus 로고    scopus 로고
    • Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network
    • Fridley GE, Le H, Yager P. 2014. Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal. Chem. 86:6447-53
    • (2014) Anal. Chem. , vol.86 , pp. 6447-6453
    • Fridley, G.E.1    Le, H.2    Yager, P.3
  • 100
    • 84867299061 scopus 로고    scopus 로고
    • Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration
    • Fridley GE, Le HQ, Fu E, Yager P. 2012. Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip 12:4321-27
    • (2012) Lab Chip , vol.12 , pp. 4321-4327
    • Fridley, G.E.1    Le, H.Q.2    Fu, E.3    Yager, P.4
  • 101
    • 84930614590 scopus 로고    scopus 로고
    • Hydrogel-driven paper-based microfluidics
    • Niedl RR, Beta C. 2015. Hydrogel-driven paper-based microfluidics. Lab Chip 15:2452-59
    • (2015) Lab Chip , vol.15 , pp. 2452-2459
    • Niedl, R.R.1    Beta, C.2
  • 102
    • 84877332711 scopus 로고    scopus 로고
    • Paper-based SlipPAD for high-throughput chemical sensing
    • Liu H, Li X, Crooks RM. 2013. Paper-based SlipPAD for high-throughput chemical sensing. Anal. Chem. 85:4263-67
    • (2013) Anal. Chem. , vol.85 , pp. 4263-4267
    • Liu, H.1    Li, X.2    Crooks, R.M.3
  • 103
    • 84902802736 scopus 로고    scopus 로고
    • Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching
    • Cunningham JC, Brenes NJ, Crooks RM. 2014. Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal. Chem. 86:6166-70
    • (2014) Anal. Chem. , vol.86 , pp. 6166-6170
    • Cunningham, J.C.1    Brenes, N.J.2    Crooks, R.M.3
  • 104
    • 78049279337 scopus 로고    scopus 로고
    • Integration of paper-based microfluidic devices with commercial electrochemical readers
    • Nie Z,Deiss F, LiuX, Akbulut O, Whitesides GM. 2010. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10:3163-69
    • (2010) Lab Chip , vol.10 , pp. 3163-3169
    • Nie, Z.1    Deiss, F.2    Liu, X.3    Akbulut, O.4    Whitesides, G.M.5
  • 105
    • 75749087179 scopus 로고    scopus 로고
    • Electrochemical sensing in paper-based microfluidic devices
    • Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, et al. 2010. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477-83
    • (2010) Lab Chip , vol.10 , pp. 477-483
    • Nie, Z.1    Nijhuis, C.A.2    Gong, J.3    Chen, X.4    Kumachev, A.5
  • 106
    • 67650725811 scopus 로고    scopus 로고
    • Electrochemical detection for paper-basedmicrofluidics
    • Dungchai W, Chailapakul O, Henry CS. 2009. Electrochemical detection for paper-basedmicrofluidics. Anal. Chem. 81:5821-26
    • (2009) Anal. Chem. , vol.81 , pp. 5821-5826
    • Dungchai, W.1    Chailapakul, O.2    Henry, C.S.3
  • 107
    • 84885366344 scopus 로고    scopus 로고
    • TiO2-graphene complex nanopaper for paper-based label-free photoelectrochemical immunoassay
    • Zhang Y, Ge L, Ge S, Yan M, Yan J, et al. 2013. TiO2-graphene complex nanopaper for paper-based label-free photoelectrochemical immunoassay. Electrochim. Acta 112:620-28
    • (2013) Electrochim. Acta , vol.112 , pp. 620-628
    • Zhang, Y.1    Ge, L.2    Ge, S.3    Yan, M.4    Yan, J.5
  • 109
    • 84899838095 scopus 로고    scopus 로고
    • Fabrication of disposable electrochemical devices using silver ink and office paper
    • de Araujo WR, Paixão TRLC. 2014. Fabrication of disposable electrochemical devices using silver ink and office paper. Analyst 139:2742-47
    • (2014) Analyst , vol.139 , pp. 2742-2747
    • De Araujo, W.R.1    Paixão, T.R.L.C.2
  • 110
    • 84859813862 scopus 로고    scopus 로고
    • Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device
    • Shiroma LY, Santhiago M, Gobbi AL, Kubota LT. 2012. Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Anal. Chem. Acta 725:44-50
    • (2012) Anal. Chem. Acta , vol.725 , pp. 44-50
    • Shiroma, L.Y.1    Santhiago, M.2    Gobbi, A.L.3    Kubota, L.T.4
  • 111
    • 84871727261 scopus 로고    scopus 로고
    • A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes
    • SanthiagoM, Kubota LT. 2013. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens. Actuators B 177:224-30
    • (2013) Sens. Actuators B , vol.177 , pp. 224-230
    • Santhiago, M.1    Kubota, L.T.2
  • 112
    • 84898618572 scopus 로고    scopus 로고
    • Low cost, simple three dimensional electrochemical paperbased analytical device for determination of p-nitrophenol
    • SanthiagoM, Henry CS, Kubota LT. 2014. Low cost, simple three dimensional electrochemical paperbased analytical device for determination of p-nitrophenol. Electrochem. Acta 130:771-77
    • (2014) Electrochem. Acta , vol.130 , pp. 771-777
    • Santhiago, M.1    Henry, C.S.2    Kubota, L.T.3
  • 113
    • 84908577758 scopus 로고    scopus 로고
    • Simple on-plastic/paper inkjet-printed solidstate Ag/AgCl pseudoreference electrode
    • da Silva ETSG, Miserere S, Kubota LT, Merkoçi A. 2014. Simple on-plastic/paper inkjet-printed solidstate Ag/AgCl pseudoreference electrode. Anal. Chem. 86:10531-34
    • (2014) Anal. Chem. , vol.86 , pp. 10531-10534
    • Da Silva, E.T.S.G.1    Miserere, S.2    Kubota, L.T.3    Merkoçi, A.4
  • 114
    • 84887344118 scopus 로고    scopus 로고
    • Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility
    • Dossi N, TonioloR, Piccin E, Susmel S, Pizzariello A, Bontempelli G. 2013. Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25:2515-22
    • (2013) Electroanalysis , vol.25 , pp. 2515-2522
    • Dossi, N.1    Toniolo, R.2    Piccin, E.3    Susmel, S.4    Pizzariello, A.5    Bontempelli, G.6
  • 115
    • 84900793588 scopus 로고    scopus 로고
    • Hand-drawn & written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing
    • Yang H, Kong Q, Wang S, Xu J, Bian Z, et al. 2014. Hand-drawn & written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing. Biosens. Bioelectron. 61:21-27
    • (2014) Biosens. Bioelectron. , vol.61 , pp. 21-27
    • Yang, H.1    Kong, Q.2    Wang, S.3    Xu, J.4    Bian, Z.5
  • 116
    • 84939445952 scopus 로고    scopus 로고
    • Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips
    • Chagas CLS, CostaDuarte L,Oliveira Lobo E Jr., Piccin E, Dossi N, ColtroWKT.2015. Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis 36:1837-44
    • (2015) Electrophoresis , vol.36 , pp. 1837-1844
    • Chagas, C.L.S.1    CostaDuarte, L.2    Oliveira Lobo, E.3    Piccin, E.4    Dossi, N.5    Coltro, W.K.T.6
  • 117
    • 84939419238 scopus 로고    scopus 로고
    • Simple pencil-drawn paper-based devices for one-spot electrochemical detection of electroactive species in oil samples
    • Dossi N, Toniolo R, Terzi F, Piccin E, Bontempelli G. 2015. Simple pencil-drawn paper-based devices for one-spot electrochemical detection of electroactive species in oil samples. Electrophoresis 36:1830-6
    • (2015) Electrophoresis , vol.36 , pp. 1830-1836
    • Dossi, N.1    Toniolo, R.2    Terzi, F.3    Piccin, E.4    Bontempelli, G.5
  • 118
    • 84899419740 scopus 로고    scopus 로고
    • Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices
    • Dossi N, Toniolo R, Impellizzieri F, Bontempelli G. 2014. Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices. J. Electroanal. Chem. 722:90-94
    • (2014) J. Electroanal. Chem. , vol.722 , pp. 90-94
    • Dossi, N.1    Toniolo, R.2    Impellizzieri, F.3    Bontempelli, G.4
  • 119
    • 84908505065 scopus 로고    scopus 로고
    • Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices
    • Dossi N, Toniolo R, Terzi F, Impellizzieri F, Bontempelli G. 2014. Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochem. Acta 146:518-24
    • (2014) Electrochem. Acta , vol.146 , pp. 518-524
    • Dossi, N.1    Toniolo, R.2    Terzi, F.3    Impellizzieri, F.4    Bontempelli, G.5
  • 120
    • 84862804455 scopus 로고    scopus 로고
    • Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials
    • Lu J, Liu S, Ge S, Yan M, Yu J, Hu X. 2012. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 33:29-35
    • (2012) Biosens. Bioelectron. , vol.33 , pp. 29-35
    • Lu, J.1    Liu, S.2    Ge, S.3    Yan, M.4    Yu, J.5    Hu, X.6
  • 121
    • 84884719026 scopus 로고    scopus 로고
    • Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors
    • Liana DD, Raguse B, Wieczorek L, Baxter GR, Chuah K, et al. 2013. Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Adv. 3:8683-91
    • (2013) RSC Adv. , vol.3 , pp. 8683-8691
    • Liana, D.D.1    Raguse, B.2    Wieczorek, L.3    Baxter, G.R.4    Chuah, K.5
  • 122
    • 84879224419 scopus 로고    scopus 로고
    • Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device
    • Ge L, Wang S, Yu J, Li N, Ge S, YanM. 2013. Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device. Adv. Funct. Mater. 23:3115-23
    • (2013) Adv. Funct. Mater. , vol.23 , pp. 3115-3123
    • Ge, L.1    Wang, S.2    Yu, J.3    Li, N.4    Ge, S.5    Yan, M.6
  • 123
    • 84884667124 scopus 로고    scopus 로고
    • Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode andmetal ion functionalized nanoporous gold-chitosan
    • Li W, Li L, Li M, Yu J, Ge S, et al. 2013. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode andmetal ion functionalized nanoporous gold-chitosan. Chem. Commun. 49:9540-42
    • (2013) Chem. Commun. , vol.49 , pp. 9540-9542
    • Li, W.1    Li, L.2    Li, M.3    Yu, J.4    Ge, S.5
  • 124
    • 84901005909 scopus 로고    scopus 로고
    • Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor
    • Li L, Xu J, Zheng X,MaC, et al. 2014. Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens. Bioelectron. 61:76-82
    • (2014) Biosens. Bioelectron. , vol.61 , pp. 76-82
    • Li, L.1    Xu, J.2    Zheng, X.3    Ma, C.4
  • 125
    • 84904480382 scopus 로고    scopus 로고
    • 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy
    • Ma C, Li W, Kong Q, Yang H, Bian Z, et al. 2015. 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosen. Bioelectron. 63:7-13
    • (2015) Biosen. Bioelectron. , vol.63 , pp. 7-13
    • Ma, C.1    Li, W.2    Kong, Q.3    Yang, H.4    Bian, Z.5
  • 126
    • 84920493804 scopus 로고    scopus 로고
    • A 3D origami electrochemical immunodevice based on a Au@Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen
    • Li L, Ma C, Kong Q, Li W, Zhang Y, et al. 2014. A 3D origami electrochemical immunodevice based on a Au@Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen. J. Mater. Chem. B 2:6669-74
    • (2014) J. Mater. Chem. B , vol.2 , pp. 6669-6674
    • Li, L.1    Ma, C.2    Kong, Q.3    Li, W.4    Zhang, Y.5
  • 127
    • 84904289880 scopus 로고    scopus 로고
    • Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes
    • Yang J, Nam YG, Lee SK, Kim CS, Koo YM, et al. 2014. Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes. Sens. Actuators B 203:44-53
    • (2014) Sens. Actuators B , vol.203 , pp. 44-53
    • Yang, J.1    Nam, Y.G.2    Lee, S.K.3    Kim, C.S.4    Koo, Y.M.5
  • 128
    • 84927590645 scopus 로고    scopus 로고
    • Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy
    • Sun G, Zhang L, Zhang Y, Yang H, Ma C, et al. 2015. Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Biosen. Bioelectron. 71:30-36
    • (2015) Biosen. Bioelectron. , vol.71 , pp. 30-36
    • Sun, G.1    Zhang, L.2    Zhang, Y.3    Yang, H.4    Ma, C.5
  • 129
    • 84921262773 scopus 로고    scopus 로고
    • Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode
    • Sun Y, He K, Zhang Z, Zhou A, Duan H. 2015. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosen. Bioelectron. 68:358-64
    • (2015) Biosen. Bioelectron. , vol.68 , pp. 358-364
    • Sun, Y.1    He, K.2    Zhang, Z.3    Zhou, A.4    Duan, H.5
  • 130
    • 84929456210 scopus 로고    scopus 로고
    • Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode
    • Sun Y, Fang Z,Wang C, Ariyawansha KRM, Zhou A, Duan H. 2015. Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale 7:7790-801
    • (2015) Nanoscale , vol.7 , pp. 7790-7801
    • Sun, Y.1    Fang, Z.2    Wang, C.3    Ariyawansha, K.R.M.4    Zhou, A.5    Duan, H.6
  • 132
    • 84928485705 scopus 로고    scopus 로고
    • Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection ofmultiple targets
    • Wei X, Tian T, Jia S, Zhu Z, Ma Y, et al. 2015. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection ofmultiple targets. Anal. Chem. 87:4275-82
    • (2015) Anal. Chem. , vol.87 , pp. 4275-4282
    • Wei, X.1    Tian, T.2    Jia, S.3    Zhu, Z.4    Ma, Y.5
  • 133
    • 84929492691 scopus 로고    scopus 로고
    • Detection of an amphiphilic biosample in a paper microchannel based on length
    • Chen YT, Yang JT. 2015. Detection of an amphiphilic biosample in a paper microchannel based on length. Biomed. Microdevices 17:9954
    • (2015) Biomed. Microdevices , vol.17 , pp. 9954
    • Chen, Y.T.1    Yang, J.T.2
  • 134
    • 84934937060 scopus 로고    scopus 로고
    • Multiplexed paper analytical device for quantification of metals using distance-based detection
    • CateDM, Noblitt SD, Volckens J,Henry CS. 2015. Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 15:2808-18
    • (2015) Lab Chip , vol.15 , pp. 2808-2818
    • Cate, D.M.1    Noblitt, S.D.2    Volckens, J.3    Henry, C.S.4
  • 135
    • 84906277783 scopus 로고    scopus 로고
    • Nanoporous membranes enable concentration and transport in fully wet paper-based assays
    • Gong MM, Zhang P, MacDonald BD, Sinton D. 2014. Nanoporous membranes enable concentration and transport in fully wet paper-based assays. Anal. Chem. 86:8090-97
    • (2014) Anal. Chem. , vol.86 , pp. 8090-8097
    • Gong, M.M.1    Zhang, P.2    MacDonald, B.D.3    Sinton, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.