-
1
-
-
77955157007
-
Routine use of point-of-care tests: Usefulness and application in clinical microbiology
-
Clerc O, Greub G. 2010. Routine use of point-of-care tests: usefulness and application in clinical microbiology. Clin. Microbiol. Infect. 16:1054-61
-
(2010)
Clin. Microbiol. Infect.
, vol.16
, pp. 1054-1061
-
-
Clerc, O.1
Greub, G.2
-
2
-
-
84878101085
-
Paper-based microfluidic point-of-care diagnostic devices
-
Yetisen AK, AkramMS, Lowe CR. 2013. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210-51
-
(2013)
Lab Chip
, vol.13
, pp. 2210-2251
-
-
Yetisen, A.K.1
Akram, M.S.2
Lowe, C.R.3
-
3
-
-
57849115714
-
Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey
-
Posthuma-Trumpie GA, Korf J, van Amerongen A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393:569-82
-
(2009)
Anal. Bioanal. Chem.
, vol.393
, pp. 569-582
-
-
Posthuma-Trumpie, G.A.1
Korf, J.2
Van Amerongen, A.3
-
4
-
-
34247273993
-
Patterned paper as a platform for inexpensive, low volume, portable bioassays
-
Martinez AW, Phillips ST, Butte MJ,Whitesides GM. 2007. Patterned paper as a platform for inexpensive, low volume, portable bioassays. Angew. Chem. Int. Ed. Engl. 46:1318-20
-
(2007)
Angew. Chem. Int. Ed. Engl.
, vol.46
, pp. 1318-1320
-
-
Martinez, A.W.1
Phillips, S.T.2
Butte, M.J.3
Whitesides, G.M.4
-
5
-
-
51949106700
-
Inkjet-printed microfluidic multianalyte chemical sensing paper
-
Abe K, Suzuki K, Citterio D. 2008. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80:6928-34
-
(2008)
Anal. Chem.
, vol.80
, pp. 6928-6934
-
-
Abe, K.1
Suzuki, K.2
Citterio, D.3
-
6
-
-
42949095976
-
Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper
-
Bruzewicz DA, Reches M, Whitesides GM. 2008. Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal. Chem. 80:3387-92
-
(2008)
Anal. Chem.
, vol.80
, pp. 3387-3392
-
-
Bruzewicz, D.A.1
Reches, M.2
Whitesides, G.M.3
-
7
-
-
56549094092
-
FLASH: A rapid method for prototyping paper-based microfluidic devices
-
Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. 2008. FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146-50
-
(2008)
Lab Chip
, vol.8
, pp. 2146-2150
-
-
Martinez, A.W.1
Phillips, S.T.2
Wiley, B.J.3
Gupta, M.4
Whitesides, G.M.5
-
8
-
-
78649884818
-
A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing
-
Dungchai W, Chailapakul O, Henry CS. 2011. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77-82
-
(2011)
Analyst
, vol.136
, pp. 77-82
-
-
Dungchai, W.1
Chailapakul, O.2
Henry, C.S.3
-
9
-
-
81155137798
-
Paper-based planar reaction arrays for printed diagnostics
-
Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J. 2011. Paper-based planar reaction arrays for printed diagnostics. Sens. Actuators B 160:1404-12
-
(2011)
Sens. Actuators B
, vol.160
, pp. 1404-1412
-
-
Määttänen, A.1
Fors, D.2
Wang, S.3
Valtakari, D.4
Ihalainen, P.5
Peltonen, J.6
-
10
-
-
84922719915
-
A simple method for patterning poly (dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps
-
Dornelas KL, Dossi N, Piccin E. 2015. A simple method for patterning poly (dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Anal. Chem. Acta 858:82-90
-
(2015)
Anal. Chem. Acta
, vol.858
, pp. 82-90
-
-
Dornelas, K.L.1
Dossi, N.2
Piccin, E.3
-
11
-
-
68849107869
-
Understandingwax printing: A simple micropatterning process for paper-based microfluidics
-
Carrilho E,Martinez AW, Whitesides GM. 2009. Understandingwax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 81:7091-95
-
(2009)
Anal. Chem.
, vol.81
, pp. 7091-7095
-
-
Carrilho, E.1
Martinez, A.W.2
Whitesides, G.M.3
-
12
-
-
68849085937
-
Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay
-
Lu Y, Shi W, Jiang L, Qin J, Lin B. 2009. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497-500
-
(2009)
Electrophoresis
, vol.30
, pp. 1497-1500
-
-
Lu, Y.1
Shi, W.2
Jiang, L.3
Qin, J.4
Lin, B.5
-
13
-
-
80053563914
-
Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping
-
Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W. 2011. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85:2587-93
-
(2011)
Talanta
, vol.85
, pp. 2587-2593
-
-
Songjaroen, T.1
Dungchai, W.2
Chailapakul, O.3
Laiwattanapaisal, W.4
-
14
-
-
84906875691
-
A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays
-
de Tarso Garcia P, Cardoso TMG, Garcia CD, Carrilho E, ColtroWKT. 2014. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Adv. 4:37637-44
-
(2014)
RSC Adv.
, vol.4
, pp. 37637-37644
-
-
De Tarso Garcia, P.1
Cardoso, T.M.G.2
Garcia, C.D.3
Carrilho, E.4
Coltro, W.K.T.5
-
15
-
-
84911431415
-
Colored wax-printed timers for two-dimensional and three-dimensional assays on paper-based devices
-
Weng CH, Chen MY, Shen CH, Yang RJ. 2014. Colored wax-printed timers for two-dimensional and three-dimensional assays on paper-based devices. Biomicrofluidics 8:066502
-
(2014)
Biomicrofluidics
, vol.8
, pp. 066502
-
-
Weng, C.H.1
Chen, M.Y.2
Shen, C.H.3
Yang, R.J.4
-
16
-
-
84894233756
-
Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing
-
Zhang Y, Zhou C, Nie J, Le S, Qin Q, et al. 2014. Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal. Chem. 86:2005-12
-
(2014)
Anal. Chem.
, vol.86
, pp. 2005-2012
-
-
Zhang, Y.1
Zhou, C.2
Nie, J.3
Le, S.4
Qin, Q.5
-
17
-
-
84864612123
-
Low-cost fabrication of paper-based microfluidic devices by one-step plotting
-
Nie J, Zhang Y, Lin L, Zhou C, Li S, et al. 2012. Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal. Chem. 84:6331-35
-
(2012)
Anal. Chem.
, vol.84
, pp. 6331-6335
-
-
Nie, J.1
Zhang, Y.2
Lin, L.3
Zhou, C.4
Li, S.5
-
18
-
-
84885082532
-
Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink
-
Curto VF, Lopez-Ruiz N, Capitan-Vallvey LF, Palma AJ, Benito-Lopez F, Diamond D. 2013. Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. RSC Adv. 3:18811-16
-
(2013)
RSC Adv.
, vol.3
, pp. 18811-18816
-
-
Curto, V.F.1
Lopez-Ruiz, N.2
Capitan-Vallvey, L.F.3
Palma, A.J.4
Benito-Lopez, F.5
Diamond, D.6
-
19
-
-
84878742533
-
Inkjet printing: An integrated and green chemical approach to microfluidic paper-based analytical devices
-
Maejima K, Tomikawa S, Suzuki K, Citterio D. 2013. Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv. 3:9258-63
-
(2013)
RSC Adv.
, vol.3
, pp. 9258-9263
-
-
Maejima, K.1
Tomikawa, S.2
Suzuki, K.3
Citterio, D.4
-
20
-
-
84873363148
-
Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning
-
He Q, Ma C, Hu X, Chen H. 2013. Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal. Chem. 85:1327-31
-
(2013)
Anal. Chem.
, vol.85
, pp. 1327-1331
-
-
He, Q.1
Ma, C.2
Hu, X.3
Chen, H.4
-
21
-
-
84879952929
-
Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper
-
Glavan AC, Martinez RV, Maxwell EJ, Subramaniam AB, Nunes RM, et al. 2013. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 13:2922-30
-
(2013)
Lab Chip
, vol.13
, pp. 2922-2930
-
-
Glavan, A.C.1
Martinez, R.V.2
Maxwell, E.J.3
Subramaniam, A.B.4
Nunes, R.M.5
-
22
-
-
84906075000
-
Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay
-
Cai L, Wang Y, Wu Y, Xu C, ZhongM, et al. 2014. Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay. Analyst 139:4593-98
-
(2014)
Analyst
, vol.139
, pp. 4593-4598
-
-
Cai, L.1
Wang, Y.2
Wu, Y.3
Xu, C.4
Zhong, M.5
-
23
-
-
84907994624
-
A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask
-
Cai L, Xu C, Lin S, Luo J, Wu M, Yang F. 2014. A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask. Biomicrofluidics 8:056504
-
(2014)
Biomicrofluidics
, vol.8
, pp. 056504
-
-
Cai, L.1
Xu, C.2
Lin, S.3
Luo, J.4
Wu, M.5
Yang, F.6
-
25
-
-
78650406348
-
Flexographically printed fluidic structures in paper
-
Olkkonen J, Lehtinen K, Erho T. 2010. Flexographically printed fluidic structures in paper. Anal. Chem. 82:10246-50
-
(2010)
Anal. Chem.
, vol.82
, pp. 10246-10250
-
-
Olkkonen, J.1
Lehtinen, K.2
Erho, T.3
-
26
-
-
84908288040
-
Laser-induced photo-polymerisation for creation of paper-based fluidic devices
-
Sones CL, Katis IN, He PJW,Mills B, NamiqMF, et al. 2014. Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab Chip 14:4567-74
-
(2014)
Lab Chip
, vol.14
, pp. 4567-4574
-
-
Sones, C.L.1
Katis, I.N.2
He, P.J.W.3
Mills, B.4
Namiq, M.F.5
-
27
-
-
84910156737
-
One-step polymer screenprinting for microfluidic paper-based analytical device (μPAD) fabrication
-
Sameenoi Y, Nongkai PN, Nouanthavong S, Henry CS, NacaprichaD. 2014. One-step polymer screenprinting for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 139:6580-88
-
(2014)
Analyst
, vol.139
, pp. 6580-6588
-
-
Sameenoi, Y.1
Nongkai, P.N.2
Nouanthavong, S.3
Henry, C.S.4
Nacapricha, D.5
-
28
-
-
84914680536
-
Paper-based microfluidics: Fabrication technique and dynamics of capillary-driven surface flow
-
Songok J, Tuominen M, Teisala H, Haapanen J, Mäkelä J, et al. 2014. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow. ACS Appl. Mater. Interfaces 6:20060-66
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 20060-20066
-
-
Songok, J.1
Tuominen, M.2
Teisala, H.3
Haapanen, J.4
Mäkelä, J.5
-
29
-
-
84884909231
-
Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water
-
Nurak T, Praphairaksit N, Chailapakul O. 2013. Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta 114:291-96
-
(2013)
Talanta
, vol.114
, pp. 291-296
-
-
Nurak, T.1
Praphairaksit, N.2
Chailapakul, O.3
-
30
-
-
84884414238
-
Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing
-
Sousa MP, Mano JF. 2013. Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose 20:2185-90
-
(2013)
Cellulose
, vol.20
, pp. 2185-2190
-
-
Sousa, M.P.1
Mano, J.F.2
-
31
-
-
57449121168
-
Paper-based microfluidic devices by plasma treatment
-
Li X, Tian J, Nguyen T, Shen W. 2008. Paper-based microfluidic devices by plasma treatment. Anal. Chem. 80:9131-34
-
(2008)
Anal. Chem.
, vol.80
, pp. 9131-9134
-
-
Li, X.1
Tian, J.2
Nguyen, T.3
Shen, W.4
-
32
-
-
75749107841
-
Fabrication of paper-based microfluidic sensors by printing
-
Li X, Tian J, Garnier G, Shen W. 2010. Fabrication of paper-based microfluidic sensors by printing. Colloids Surf. B 76:564-70
-
(2010)
Colloids Surf. B
, vol.76
, pp. 564-570
-
-
Li, X.1
Tian, J.2
Garnier, G.3
Shen, W.4
-
34
-
-
84890537223
-
Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices
-
Chen B, Kwong P,GuptaM. 2013. Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices. ACS Appl. Mater. Interfaces 5:12701-7
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 12701-12707
-
-
Chen, B.1
Kwong, P.2
Gupta, M.3
-
35
-
-
84893007655
-
Hydrophobic sol-gel channel patterning strategies for paper-based microfluidics
-
Wang J, Monton MRN, Zhang X, FilipeCD, Pelton R, Brennan JD. 2014. Hydrophobic sol-gel channel patterning strategies for paper-based microfluidics. Lab Chip 14:691-95
-
(2014)
Lab Chip
, vol.14
, pp. 691-695
-
-
Wang, J.1
Monton, M.R.N.2
Zhang, X.3
Filipe, C.D.4
Pelton, R.5
Brennan, J.D.6
-
36
-
-
84894244705
-
Inkjet patterned superhydrophobic paper for openair surface microfluidic devices
-
Elsharkawy M, Schutzius TM, Megaridis CM. 2014. Inkjet patterned superhydrophobic paper for openair surface microfluidic devices. Lab Chip 14:1168-75
-
(2014)
Lab Chip
, vol.14
, pp. 1168-1175
-
-
Elsharkawy, M.1
Schutzius, T.M.2
Megaridis, C.M.3
-
37
-
-
84928946252
-
Reagent pencils: A new technique for solvent-free deposition of reagents onto paper-based microfluidic devices
-
Mitchell HT,Noxon IC, Chaplan CA, Carlton SJ, Liu CH, et al. 2015. Reagent pencils: A new technique for solvent-free deposition of reagents onto paper-based microfluidic devices. Lab Chip 15:2213-20
-
(2015)
Lab Chip
, vol.15
, pp. 2213-2220
-
-
Mitchell, H.T.1
Noxon, I.C.2
Chaplan, C.A.3
Carlton, S.J.4
Liu, C.H.5
-
38
-
-
84869426054
-
Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations
-
Kwong P,GuptaM. 2012. Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations. Anal. Chem. 84:10129-35
-
(2012)
Anal. Chem.
, vol.84
, pp. 10129-10135
-
-
Kwong, P.1
Gupta, M.2
-
39
-
-
84898927317
-
Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications
-
Demirel G, Babur E. 2014. Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst 139:2326-31
-
(2014)
Analyst
, vol.139
, pp. 2326-2331
-
-
Demirel, G.1
Babur, E.2
-
40
-
-
84924964780
-
Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm R
-
Yu L, Shi ZZ. 2015. Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm R . Lab Chip 15:1642-45
-
(2015)
Lab Chip
, vol.15
, pp. 1642-1645
-
-
Yu, L.1
Shi, Z.Z.2
-
41
-
-
84908273462
-
Paper-based colorimetric enzyme linked immunosorbent assay fabricated by laser induced forward transfer
-
Katis IN, Holloway JA, Madsen J, Faust SN, Garbis SD, et al. 2014. Paper-based colorimetric enzyme linked immunosorbent assay fabricated by laser induced forward transfer. Biomicrofluidics 8:036502
-
(2014)
Biomicrofluidics
, vol.8
, pp. 036502
-
-
Katis, I.N.1
Holloway, J.A.2
Madsen, J.3
Faust, S.N.4
Garbis, S.D.5
-
42
-
-
84906860984
-
Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand
-
Kao PK, Hsu CC. 2014. Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand. Anal. Chem. 86:8757-62
-
(2014)
Anal. Chem.
, vol.86
, pp. 8757-8762
-
-
Kao, P.K.1
Hsu, C.C.2
-
43
-
-
84877342074
-
Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates
-
Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF. 2013. Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids Surf. A 416:51-55
-
(2013)
Colloids Surf. A
, vol.416
, pp. 51-55
-
-
Obeso, C.G.1
Sousa, M.P.2
Song, W.3
Rodriguez-Pérez, M.A.4
Bhushan, B.5
Mano, J.F.6
-
44
-
-
79952177518
-
Laser-treated hydrophobic paper: An inexpensive microfluidic platform
-
Chitnis G, Ding Z, Chang CL, Savran CA, Ziaie B. 2011. Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161-65
-
(2011)
Lab Chip
, vol.11
, pp. 1161-1165
-
-
Chitnis, G.1
Ding, Z.2
Chang, C.L.3
Savran, C.A.4
Ziaie, B.5
-
46
-
-
84861122286
-
Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection
-
Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P. 2012. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 84:4574-79
-
(2012)
Anal. Chem.
, vol.84
, pp. 4574-4579
-
-
Fu, E.1
Liang, T.2
Spicar-Mihalic, P.3
Houghtaling, J.4
Ramachandran, S.5
Yager, P.6
-
47
-
-
84870916861
-
One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices
-
Nie J, Liang Y, Zhang Y, Le S, Li D, Zhang S. 2013. One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138:671-76
-
(2013)
Analyst
, vol.138
, pp. 671-676
-
-
Nie, J.1
Liang, Y.2
Zhang, Y.3
Le, S.4
Li, D.5
Zhang, S.6
-
48
-
-
84901745640
-
Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection
-
Mu X, Zhang L, Chang S, CuiW, Zheng Z. 2014. Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal. Chem. 86:5338-44
-
(2014)
Anal. Chem.
, vol.86
, pp. 5338-5344
-
-
Mu, X.1
Zhang, L.2
Chang, S.3
Cui, W.4
Zheng, Z.5
-
49
-
-
84881237670
-
Laminated paper-based analytical devices (LPAD): Fabrication, characterization, and assays
-
Cassano CL, Fan ZH. 2013. Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluid. Nanofluid. 15:173-81
-
(2013)
Microfluid. Nanofluid.
, vol.15
, pp. 173-181
-
-
Cassano, C.L.1
Fan, Z.H.2
-
50
-
-
84887711503
-
Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum
-
Liu W, Cassano CL, Xu X, Fan ZH. 2013. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal. Chem. 85:10270-76
-
(2013)
Anal. Chem.
, vol.85
, pp. 10270-10276
-
-
Liu, W.1
Cassano, C.L.2
Xu, X.3
Fan, Z.H.4
-
52
-
-
84903730331
-
Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels
-
Giokas DL, Tsogas GZ, Vlessidis AG. 2014. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels. Anal. Chem. 86:6202-7
-
(2014)
Anal. Chem.
, vol.86
, pp. 6202-6207
-
-
Giokas, D.L.1
Tsogas, G.Z.2
Vlessidis, A.G.3
-
53
-
-
84882921306
-
Quantifying analytes in paper-based microfluidic devices without using external electronic readers
-
Lewis GG, DiTucci MJ, Phillips ST. 2012. Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem. Int. Ed. Engl. 124:12879-82
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.124
, pp. 12879-12882
-
-
Lewis, G.G.1
DiTucci, M.J.2
Phillips, S.T.3
-
55
-
-
58149378331
-
Three-dimensional microfluidic devices fabricated in layered paper and tape
-
Martinez AW, Phillips ST, Whitesides GM. 2008. Three-dimensional microfluidic devices fabricated in layered paper and tape. PNAS 105:19606-11
-
(2008)
PNAS
, vol.105
, pp. 19606-19611
-
-
Martinez, A.W.1
Phillips, S.T.2
Whitesides, G.M.3
-
56
-
-
84904632121
-
Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods
-
Thuo MM, Martinez RV, Lan WJ, Liu X, Barber J, et al. 2014. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem. Mater. 26:4230-37
-
(2014)
Chem. Mater.
, vol.26
, pp. 4230-4237
-
-
Thuo, M.M.1
Martinez, R.V.2
Lan, W.J.3
Liu, X.4
Barber, J.5
-
57
-
-
84863687739
-
High throughput method for prototyping threedimensional, paper-based microfluidic devices
-
Lewis GG, DiTucci MJ, Baker MS, Phillips ST. 2012. High throughput method for prototyping threedimensional, paper-based microfluidic devices. Lab Chip 12:2630-33
-
(2012)
Lab Chip
, vol.12
, pp. 2630-2633
-
-
Lewis, G.G.1
DiTucci, M.J.2
Baker, M.S.3
Phillips, S.T.4
-
58
-
-
84875791395
-
Paper and toner three-dimensional fluidic devices: Programming fluid flow to improve point-of-care diagnostics
-
Schilling KM, Jauregui D, Martinez AW. 2013. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab Chip 13:628-31
-
(2013)
Lab Chip
, vol.13
, pp. 628-631
-
-
Schilling, K.M.1
Jauregui, D.2
Martinez, A.W.3
-
59
-
-
84908053114
-
Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits
-
Kalish B, Tsutsui H. 2014. Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits. Lab Chip 14:4354-61
-
(2014)
Lab Chip
, vol.14
, pp. 4354-4361
-
-
Kalish, B.1
Tsutsui, H.2
-
60
-
-
80455129421
-
Three-dimensional paper microfluidic devices assembled using the principles of origami
-
Liu H, Crooks RM. 2011. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133:17564-66
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 17564-17566
-
-
Liu, H.1
Crooks, R.M.2
-
61
-
-
84888374350
-
Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine
-
Sechi D, Greer B, Johnson J, Hashemi N. 2013. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal. Chem. 85:10733-37
-
(2013)
Anal. Chem.
, vol.85
, pp. 10733-10737
-
-
Sechi, D.1
Greer, B.2
Johnson, J.3
Hashemi, N.4
-
62
-
-
82555176812
-
A low cost point-ofcare viscous sample preparation device for molecular diagnosis in the developing world; An example of microfluidic origami
-
Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Böhringer KF. 2012. A low cost point-ofcare viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12:174-81
-
(2012)
Lab Chip
, vol.12
, pp. 174-181
-
-
Govindarajan, A.V.1
Ramachandran, S.2
Vigil, G.D.3
Yager, P.4
Böhringer, K.F.5
-
63
-
-
84866994165
-
Aptamer-based origami paper analytical device for electrochemical detection of adenosine
-
Liu H, Xiang Y, Lu Y, Crooks RM. 2012. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. Engl. 124:7031-34
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.124
, pp. 7031-7034
-
-
Liu, H.1
Xiang, Y.2
Lu, Y.3
Crooks, R.M.4
-
64
-
-
84859959638
-
Electrochemical immunoassay on a 3D microfluidic paperbased device
-
Zang D, Ge L, Yan M, Song X, Yu J. 2012. Electrochemical immunoassay on a 3D microfluidic paperbased device. Chem. Commun. 48:4683-85
-
(2012)
Chem. Commun.
, vol.48
, pp. 4683-4685
-
-
Zang, D.1
Ge, L.2
Yan, M.3
Song, X.4
Yu, J.5
-
65
-
-
84865267213
-
Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing
-
Lu J, Ge S, Ge L, YanM, Yu J. 2012. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim. Acta 80:334-41
-
(2012)
Electrochim. Acta
, vol.80
, pp. 334-341
-
-
Lu, J.1
Ge, S.2
Ge, L.3
Yan, M.4
Yu, J.5
-
66
-
-
81355161670
-
Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing
-
Ge L, Yan J, Song X, Yan M, Ge S, Yu J. 2012. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024-31
-
(2012)
Biomaterials
, vol.33
, pp. 1024-1031
-
-
Ge, L.1
Yan, J.2
Song, X.3
Yan, M.4
Ge, S.5
Yu, J.6
-
67
-
-
84859621676
-
Paper-based electrochemiluminescent 3Dimmunodevice for lab-on-paper, specific, and sensitive point-of-care testing
-
Yan J,Ge L, Song X, Yan M, Ge S, Yu J. 2012. Paper-based electrochemiluminescent 3Dimmunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem. Eur. J. 18:4938-45
-
(2012)
Chem. Eur. J.
, vol.18
, pp. 4938-4945
-
-
Yan, J.1
Ge, L.2
Song, X.3
Yan, M.4
Ge, S.5
Yu, J.6
-
68
-
-
84872716444
-
A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative
-
Yan J, Yan M, Ge L, Yu J, Ge S, Huang J. 2013. A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. Chem. Commun. 49:1383-85
-
(2013)
Chem. Commun.
, vol.49
, pp. 1383-1385
-
-
Yan, J.1
Yan, M.2
Ge, L.3
Yu, J.4
Ge, S.5
Huang, J.6
-
69
-
-
84899901580
-
Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper
-
Li X, Liu X. 2014. Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid. Nanofluid. 16:819-27
-
(2014)
Microfluid. Nanofluid.
, vol.16
, pp. 819-827
-
-
Li, X.1
Liu, X.2
-
70
-
-
84902593701
-
Three-dimensional wax patterning of paper fluidic devices
-
Renault C, Koehne J, Ricco AJ, Crooks RM. 2014. Three-dimensional wax patterning of paper fluidic devices. Langmuir 30:7030-36
-
(2014)
Langmuir
, vol.30
, pp. 7030-7036
-
-
Renault, C.1
Koehne, J.2
Ricco, A.J.3
Crooks, R.M.4
-
71
-
-
84922571415
-
Toward instrument-free digital measurements: A three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination
-
Jeong SG, Lee SH, Choi CH, Kim J, Lee CS. 2015. Toward instrument-free digital measurements: A three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination. Lab Chip 15:1188-94
-
(2015)
Lab Chip
, vol.15
, pp. 1188-1194
-
-
Jeong, S.G.1
Lee, S.H.2
Choi, C.H.3
Kim, J.4
Lee, C.S.5
-
72
-
-
75749113741
-
Diagnostics for the developing world: Microfluidic paper-based analytical devices
-
Martinez AW, Phillips ST, Whitesides GM, Carrilho E. 2009. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:3-10
-
(2009)
Anal. Chem.
, vol.82
, pp. 3-10
-
-
Martinez, A.W.1
Phillips, S.T.2
Whitesides, G.M.3
Carrilho, E.4
-
74
-
-
84861174093
-
Microfluidic paper-based analytical device for particulate metals
-
Mentele MM, Cunningham J, Koehler K, Volckens J, Henry CS. 2012. Microfluidic paper-based analytical device for particulate metals. Anal. Chem. 84:4474-80
-
(2012)
Anal. Chem.
, vol.84
, pp. 4474-4480
-
-
Mentele, M.M.1
Cunningham, J.2
Koehler, K.3
Volckens, J.4
Henry, C.S.5
-
75
-
-
79951724086
-
A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination
-
Yu J, Wang S, Ge L, Ge S. 2011. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens. Bioelectron. 26:3284-89
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 3284-3289
-
-
Yu, J.1
Wang, S.2
Ge, L.3
Ge, S.4
-
76
-
-
84900524901
-
Evaluation and application of a paper-based device for the determination of reactive phosphate in soil solution
-
Jayawardane BM, Wongwilai W, Grudpan K, Kolev SD, Heaven MW, et al. 2014. Evaluation and application of a paper-based device for the determination of reactive phosphate in soil solution. J. Environ. Qual. 43:1081-85
-
(2014)
J. Environ. Qual.
, vol.43
, pp. 1081-1085
-
-
Jayawardane, B.M.1
Wongwilai, W.2
Grudpan, K.3
Kolev, S.D.4
Heaven, M.W.5
-
77
-
-
79953802097
-
A portable microfluidic paper-based device for ELISA
-
New York: IEEE
-
Liu XY, Cheng CM, Martinez AW, Mirica KA, Li XJ, et al. 2011. A portable microfluidic paper-based device for ELISA. In IEEE 24th Int. Conf. Micro ElectroMech. Syst. (MEMS), pp. 75-78. New York: IEEE
-
(2011)
IEEE 24th Int. Conf. Micro ElectroMech. Syst. (MEMS)
, pp. 75-78
-
-
Liu, X.Y.1
Cheng, C.M.2
Martinez, A.W.3
Mirica, K.A.4
Li, X.J.5
-
78
-
-
84922141391
-
Paper based thin layer coulometric sensor for halide determination
-
Cuartero M, Crespo GA, Bakker E. 2015. Paper based thin layer coulometric sensor for halide determination. Anal. Chem. 87:1981-90
-
(2015)
Anal. Chem.
, vol.87
, pp. 1981-1990
-
-
Cuartero, M.1
Crespo, G.A.2
Bakker, E.3
-
79
-
-
79551480413
-
Transport in two-dimensional paper networks
-
Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P. 2011. Transport in two-dimensional paper networks. Microfluid. Nanofluid. 10:29-35
-
(2011)
Microfluid. Nanofluid.
, vol.10
, pp. 29-35
-
-
Fu, E.1
Ramsey, S.A.2
Kauffman, P.3
Lutz, B.4
Yager, P.5
-
80
-
-
77956305241
-
Visualization and measurement of flow in two-dimensional paper networks
-
Kauffman P, Fu E, Lutz B, Yager P. 2010. Visualization and measurement of flow in two-dimensional paper networks. Lab Chip 10:2614-17
-
(2010)
Lab Chip
, vol.10
, pp. 2614-2617
-
-
Kauffman, P.1
Fu, E.2
Lutz, B.3
Yager, P.4
-
81
-
-
84928969199
-
Raman characterization of nanoparticle transport in microfluidic paper-based analytical devices (μPADs)
-
Lahr RH, Wallace GC, Vikesland PJ. 2015. Raman characterization of nanoparticle transport in microfluidic paper-based analytical devices (μPADs). ACS Appl. Mater. Interfaces 7:9139-46
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 9139-9146
-
-
Lahr, R.H.1
Wallace, G.C.2
Vikesland, P.J.3
-
82
-
-
84928944821
-
Rational design of capillary-driven flows for paper-based microfluidics
-
Elizalde E, Urteaga R, Berli CL. 2015. Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15:2173-80
-
(2015)
Lab Chip
, vol.15
, pp. 2173-2180
-
-
Elizalde, E.1
Urteaga, R.2
Berli, C.L.3
-
83
-
-
77949868628
-
Controlled reagent transport in disposable 2D paper networks
-
Fu E, Lutz B, Kauffman P, Yager P. 2010. Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918-20
-
(2010)
Lab Chip
, vol.10
, pp. 918-920
-
-
Fu, E.1
Lutz, B.2
Kauffman, P.3
Yager, P.4
-
84
-
-
84868580330
-
Creating fast flow channels in paper fluidic devices to control timing of sequential reactions
-
Jahanshahi-Anbuhi S, Chavan P, Sicard C, Leung V, Hossain SZ, et al. 2012. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 12:5079-85
-
(2012)
Lab Chip
, vol.12
, pp. 5079-5085
-
-
Jahanshahi-Anbuhi, S.1
Chavan, P.2
Sicard, C.3
Leung, V.4
Hossain, S.Z.5
-
85
-
-
84925002985
-
Triboelectric effect as a new strategy for sealing and controlling the flow in paper-based devices
-
da Silva ET, SanthiagoM, de Souza FR, et al. 2015. Triboelectric effect as a new strategy for sealing and controlling the flow in paper-based devices. Lab Chip 15:1651-55
-
(2015)
Lab Chip
, vol.15
, pp. 1651-1655
-
-
Da Silva, E.T.1
Santhiago, M.2
De Souza, F.R.3
-
86
-
-
84889008255
-
Tunable-delay shunts for paper microfluidic devices
-
Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E. 2013. Tunable-delay shunts for paper microfluidic devices. Anal. Chem. 85:11545-52
-
(2013)
Anal. Chem.
, vol.85
, pp. 11545-11552
-
-
Toley, B.J.1
McKenzie, B.2
Liang, T.3
Buser, J.R.4
Yager, P.5
Fu, E.6
-
87
-
-
84924254695
-
A versatile valving toolkit for automating fluidic operations in paper microfluidic devices
-
Toley BJ, Wang JA, GuptaM, Buser JR, Lafleur LK, et al. 2015. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15:1432-44
-
(2015)
Lab Chip
, vol.15
, pp. 1432-1444
-
-
Toley, B.J.1
Wang, J.A.2
Gupta, M.3
Buser, J.R.4
Lafleur, L.K.5
-
88
-
-
84881062373
-
Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics
-
Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P. 2013. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:2840-47
-
(2013)
Lab Chip
, vol.13
, pp. 2840-2847
-
-
Lutz, B.1
Liang, T.2
Fu, E.3
Ramachandran, S.4
Kauffman, P.5
Yager, P.6
-
89
-
-
77952537539
-
Metering the capillary-driven flow of fluids in paper-based microfluidic devices
-
Noh H, Phillips ST. 2010. Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal. Chem. 82:4181-87
-
(2010)
Anal. Chem.
, vol.82
, pp. 4181-4187
-
-
Noh, H.1
Phillips, S.T.2
-
90
-
-
77957316195
-
Fluidic timers for time-dependent, point-of-care assays on paper
-
NohH, Phillips ST. 2010. Fluidic timers for time-dependent, point-of-care assays on paper. Anal. Chem. 82:8071-78
-
(2010)
Anal. Chem.
, vol.82
, pp. 8071-8078
-
-
Noh, H.1
Phillips, S.T.2
-
91
-
-
77956328100
-
Programmable diagnostic devices made from paper and tape
-
Martinez AW, Phillips ST, Nie Z, Cheng CM, Carrilho E, et al. 2010. Programmable diagnostic devices made from paper and tape. Lab Chip 10:2499-504
-
(2010)
Lab Chip
, vol.10
, pp. 2499-2504
-
-
Martinez, A.W.1
Phillips, S.T.2
Nie, Z.3
Cheng, C.M.4
Carrilho, E.5
-
92
-
-
84864266777
-
A fluidic diode, valves, and a sequentialloading circuit fabricated on layered paper
-
Chen H, Cogswell J, Anagnostopoulos C, Faghri M. 2012. A fluidic diode, valves, and a sequentialloading circuit fabricated on layered paper. Lab Chip 12:2909-13
-
(2012)
Lab Chip
, vol.12
, pp. 2909-2913
-
-
Chen, H.1
Cogswell, J.2
Anagnostopoulos, C.3
Faghri, M.4
-
93
-
-
84907818451
-
A new paper-based platform technology for point-of-care diagnostics
-
Gerbers R, Foellscher W, Chen H, Anagnostopoulos C, Faghri M. 2014. A new paper-based platform technology for point-of-care diagnostics. Lab Chip 14:4042-49
-
(2014)
Lab Chip
, vol.14
, pp. 4042-4049
-
-
Gerbers, R.1
Foellscher, W.2
Chen, H.3
Anagnostopoulos, C.4
Faghri, M.5
-
94
-
-
84881176762
-
An inkjet-printed electrowetting valve for paper-fluidic sensors
-
Koo CK, He F, Nugen SR. 2013. An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst 138:4998-5004
-
(2013)
Analyst
, vol.138
, pp. 4998-5004
-
-
Koo, C.K.1
He, F.2
Nugen, S.R.3
-
95
-
-
84889071523
-
Dissolvable bridges for manipulating fluid volumes in paper networks
-
Houghtaling J, Liang T, Thiessen G, Fu E. 2013. Dissolvable bridges for manipulating fluid volumes in paper networks. Anal. Chem. 85:11201-4
-
(2013)
Anal. Chem.
, vol.85
, pp. 11201-11204
-
-
Houghtaling, J.1
Liang, T.2
Thiessen, G.3
Fu, E.4
-
96
-
-
84878641593
-
Magnetic timing valves for fluid control in paper-based microfluidics
-
Li X, Zwanenburg P, Liu X. 2013. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 13:2609-14
-
(2013)
Lab Chip
, vol.13
, pp. 2609-2614
-
-
Li, X.1
Zwanenburg, P.2
Liu, X.3
-
97
-
-
84858315509
-
Two-dimensional paper networks: Programmable fluidic disconnects for multi-step processes in shaped paper
-
Lutz BR, Trinh P, Ball C, Fu E, Yager P. 2011. Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 11:4274-78
-
(2011)
Lab Chip
, vol.11
, pp. 4274-4278
-
-
Lutz, B.R.1
Trinh, P.2
Ball, C.3
Fu, E.4
Yager, P.5
-
98
-
-
84870227903
-
Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing
-
ApiluxA,Ukita Y, Chikae M, Chailapakul O, Takamura Y. 2013. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126-35
-
(2013)
Lab Chip
, vol.13
, pp. 126-135
-
-
Apilux, A.1
Ukita, Y.2
Chikae, M.3
Chailapakul, O.4
Takamura, Y.5
-
99
-
-
84903718176
-
Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network
-
Fridley GE, Le H, Yager P. 2014. Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal. Chem. 86:6447-53
-
(2014)
Anal. Chem.
, vol.86
, pp. 6447-6453
-
-
Fridley, G.E.1
Le, H.2
Yager, P.3
-
100
-
-
84867299061
-
Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration
-
Fridley GE, Le HQ, Fu E, Yager P. 2012. Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip 12:4321-27
-
(2012)
Lab Chip
, vol.12
, pp. 4321-4327
-
-
Fridley, G.E.1
Le, H.Q.2
Fu, E.3
Yager, P.4
-
101
-
-
84930614590
-
Hydrogel-driven paper-based microfluidics
-
Niedl RR, Beta C. 2015. Hydrogel-driven paper-based microfluidics. Lab Chip 15:2452-59
-
(2015)
Lab Chip
, vol.15
, pp. 2452-2459
-
-
Niedl, R.R.1
Beta, C.2
-
102
-
-
84877332711
-
Paper-based SlipPAD for high-throughput chemical sensing
-
Liu H, Li X, Crooks RM. 2013. Paper-based SlipPAD for high-throughput chemical sensing. Anal. Chem. 85:4263-67
-
(2013)
Anal. Chem.
, vol.85
, pp. 4263-4267
-
-
Liu, H.1
Li, X.2
Crooks, R.M.3
-
103
-
-
84902802736
-
Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching
-
Cunningham JC, Brenes NJ, Crooks RM. 2014. Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal. Chem. 86:6166-70
-
(2014)
Anal. Chem.
, vol.86
, pp. 6166-6170
-
-
Cunningham, J.C.1
Brenes, N.J.2
Crooks, R.M.3
-
104
-
-
78049279337
-
Integration of paper-based microfluidic devices with commercial electrochemical readers
-
Nie Z,Deiss F, LiuX, Akbulut O, Whitesides GM. 2010. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10:3163-69
-
(2010)
Lab Chip
, vol.10
, pp. 3163-3169
-
-
Nie, Z.1
Deiss, F.2
Liu, X.3
Akbulut, O.4
Whitesides, G.M.5
-
105
-
-
75749087179
-
Electrochemical sensing in paper-based microfluidic devices
-
Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, et al. 2010. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477-83
-
(2010)
Lab Chip
, vol.10
, pp. 477-483
-
-
Nie, Z.1
Nijhuis, C.A.2
Gong, J.3
Chen, X.4
Kumachev, A.5
-
106
-
-
67650725811
-
Electrochemical detection for paper-basedmicrofluidics
-
Dungchai W, Chailapakul O, Henry CS. 2009. Electrochemical detection for paper-basedmicrofluidics. Anal. Chem. 81:5821-26
-
(2009)
Anal. Chem.
, vol.81
, pp. 5821-5826
-
-
Dungchai, W.1
Chailapakul, O.2
Henry, C.S.3
-
107
-
-
84885366344
-
TiO2-graphene complex nanopaper for paper-based label-free photoelectrochemical immunoassay
-
Zhang Y, Ge L, Ge S, Yan M, Yan J, et al. 2013. TiO2-graphene complex nanopaper for paper-based label-free photoelectrochemical immunoassay. Electrochim. Acta 112:620-28
-
(2013)
Electrochim. Acta
, vol.112
, pp. 620-628
-
-
Zhang, Y.1
Ge, L.2
Ge, S.3
Yan, M.4
Yan, J.5
-
108
-
-
84880045364
-
Electrochemical detection of glucose from whole blood using paper-based microfluidic devices
-
Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W. 2013. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal. Chem. Acta 788:39-45
-
(2013)
Anal. Chem. Acta
, vol.788
, pp. 39-45
-
-
Noiphung, J.1
Songjaroen, T.2
Dungchai, W.3
Henry, C.S.4
Chailapakul, O.5
Laiwattanapaisal, W.6
-
109
-
-
84899838095
-
Fabrication of disposable electrochemical devices using silver ink and office paper
-
de Araujo WR, Paixão TRLC. 2014. Fabrication of disposable electrochemical devices using silver ink and office paper. Analyst 139:2742-47
-
(2014)
Analyst
, vol.139
, pp. 2742-2747
-
-
De Araujo, W.R.1
Paixão, T.R.L.C.2
-
110
-
-
84859813862
-
Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device
-
Shiroma LY, Santhiago M, Gobbi AL, Kubota LT. 2012. Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Anal. Chem. Acta 725:44-50
-
(2012)
Anal. Chem. Acta
, vol.725
, pp. 44-50
-
-
Shiroma, L.Y.1
Santhiago, M.2
Gobbi, A.L.3
Kubota, L.T.4
-
111
-
-
84871727261
-
A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes
-
SanthiagoM, Kubota LT. 2013. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens. Actuators B 177:224-30
-
(2013)
Sens. Actuators B
, vol.177
, pp. 224-230
-
-
Santhiago, M.1
Kubota, L.T.2
-
112
-
-
84898618572
-
Low cost, simple three dimensional electrochemical paperbased analytical device for determination of p-nitrophenol
-
SanthiagoM, Henry CS, Kubota LT. 2014. Low cost, simple three dimensional electrochemical paperbased analytical device for determination of p-nitrophenol. Electrochem. Acta 130:771-77
-
(2014)
Electrochem. Acta
, vol.130
, pp. 771-777
-
-
Santhiago, M.1
Henry, C.S.2
Kubota, L.T.3
-
113
-
-
84908577758
-
Simple on-plastic/paper inkjet-printed solidstate Ag/AgCl pseudoreference electrode
-
da Silva ETSG, Miserere S, Kubota LT, Merkoçi A. 2014. Simple on-plastic/paper inkjet-printed solidstate Ag/AgCl pseudoreference electrode. Anal. Chem. 86:10531-34
-
(2014)
Anal. Chem.
, vol.86
, pp. 10531-10534
-
-
Da Silva, E.T.S.G.1
Miserere, S.2
Kubota, L.T.3
Merkoçi, A.4
-
114
-
-
84887344118
-
Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility
-
Dossi N, TonioloR, Piccin E, Susmel S, Pizzariello A, Bontempelli G. 2013. Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25:2515-22
-
(2013)
Electroanalysis
, vol.25
, pp. 2515-2522
-
-
Dossi, N.1
Toniolo, R.2
Piccin, E.3
Susmel, S.4
Pizzariello, A.5
Bontempelli, G.6
-
115
-
-
84900793588
-
Hand-drawn & written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing
-
Yang H, Kong Q, Wang S, Xu J, Bian Z, et al. 2014. Hand-drawn & written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing. Biosens. Bioelectron. 61:21-27
-
(2014)
Biosens. Bioelectron.
, vol.61
, pp. 21-27
-
-
Yang, H.1
Kong, Q.2
Wang, S.3
Xu, J.4
Bian, Z.5
-
116
-
-
84939445952
-
Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips
-
Chagas CLS, CostaDuarte L,Oliveira Lobo E Jr., Piccin E, Dossi N, ColtroWKT.2015. Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis 36:1837-44
-
(2015)
Electrophoresis
, vol.36
, pp. 1837-1844
-
-
Chagas, C.L.S.1
CostaDuarte, L.2
Oliveira Lobo, E.3
Piccin, E.4
Dossi, N.5
Coltro, W.K.T.6
-
117
-
-
84939419238
-
Simple pencil-drawn paper-based devices for one-spot electrochemical detection of electroactive species in oil samples
-
Dossi N, Toniolo R, Terzi F, Piccin E, Bontempelli G. 2015. Simple pencil-drawn paper-based devices for one-spot electrochemical detection of electroactive species in oil samples. Electrophoresis 36:1830-6
-
(2015)
Electrophoresis
, vol.36
, pp. 1830-1836
-
-
Dossi, N.1
Toniolo, R.2
Terzi, F.3
Piccin, E.4
Bontempelli, G.5
-
118
-
-
84899419740
-
Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices
-
Dossi N, Toniolo R, Impellizzieri F, Bontempelli G. 2014. Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices. J. Electroanal. Chem. 722:90-94
-
(2014)
J. Electroanal. Chem.
, vol.722
, pp. 90-94
-
-
Dossi, N.1
Toniolo, R.2
Impellizzieri, F.3
Bontempelli, G.4
-
119
-
-
84908505065
-
Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices
-
Dossi N, Toniolo R, Terzi F, Impellizzieri F, Bontempelli G. 2014. Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochem. Acta 146:518-24
-
(2014)
Electrochem. Acta
, vol.146
, pp. 518-524
-
-
Dossi, N.1
Toniolo, R.2
Terzi, F.3
Impellizzieri, F.4
Bontempelli, G.5
-
120
-
-
84862804455
-
Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials
-
Lu J, Liu S, Ge S, Yan M, Yu J, Hu X. 2012. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 33:29-35
-
(2012)
Biosens. Bioelectron.
, vol.33
, pp. 29-35
-
-
Lu, J.1
Liu, S.2
Ge, S.3
Yan, M.4
Yu, J.5
Hu, X.6
-
121
-
-
84884719026
-
Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors
-
Liana DD, Raguse B, Wieczorek L, Baxter GR, Chuah K, et al. 2013. Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Adv. 3:8683-91
-
(2013)
RSC Adv.
, vol.3
, pp. 8683-8691
-
-
Liana, D.D.1
Raguse, B.2
Wieczorek, L.3
Baxter, G.R.4
Chuah, K.5
-
122
-
-
84879224419
-
Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device
-
Ge L, Wang S, Yu J, Li N, Ge S, YanM. 2013. Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device. Adv. Funct. Mater. 23:3115-23
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 3115-3123
-
-
Ge, L.1
Wang, S.2
Yu, J.3
Li, N.4
Ge, S.5
Yan, M.6
-
123
-
-
84884667124
-
Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode andmetal ion functionalized nanoporous gold-chitosan
-
Li W, Li L, Li M, Yu J, Ge S, et al. 2013. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode andmetal ion functionalized nanoporous gold-chitosan. Chem. Commun. 49:9540-42
-
(2013)
Chem. Commun.
, vol.49
, pp. 9540-9542
-
-
Li, W.1
Li, L.2
Li, M.3
Yu, J.4
Ge, S.5
-
124
-
-
84901005909
-
Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor
-
Li L, Xu J, Zheng X,MaC, et al. 2014. Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens. Bioelectron. 61:76-82
-
(2014)
Biosens. Bioelectron.
, vol.61
, pp. 76-82
-
-
Li, L.1
Xu, J.2
Zheng, X.3
Ma, C.4
-
125
-
-
84904480382
-
3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy
-
Ma C, Li W, Kong Q, Yang H, Bian Z, et al. 2015. 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosen. Bioelectron. 63:7-13
-
(2015)
Biosen. Bioelectron.
, vol.63
, pp. 7-13
-
-
Ma, C.1
Li, W.2
Kong, Q.3
Yang, H.4
Bian, Z.5
-
126
-
-
84920493804
-
A 3D origami electrochemical immunodevice based on a Au@Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen
-
Li L, Ma C, Kong Q, Li W, Zhang Y, et al. 2014. A 3D origami electrochemical immunodevice based on a Au@Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen. J. Mater. Chem. B 2:6669-74
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 6669-6674
-
-
Li, L.1
Ma, C.2
Kong, Q.3
Li, W.4
Zhang, Y.5
-
127
-
-
84904289880
-
Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes
-
Yang J, Nam YG, Lee SK, Kim CS, Koo YM, et al. 2014. Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes. Sens. Actuators B 203:44-53
-
(2014)
Sens. Actuators B
, vol.203
, pp. 44-53
-
-
Yang, J.1
Nam, Y.G.2
Lee, S.K.3
Kim, C.S.4
Koo, Y.M.5
-
128
-
-
84927590645
-
Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy
-
Sun G, Zhang L, Zhang Y, Yang H, Ma C, et al. 2015. Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Biosen. Bioelectron. 71:30-36
-
(2015)
Biosen. Bioelectron.
, vol.71
, pp. 30-36
-
-
Sun, G.1
Zhang, L.2
Zhang, Y.3
Yang, H.4
Ma, C.5
-
129
-
-
84921262773
-
Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode
-
Sun Y, He K, Zhang Z, Zhou A, Duan H. 2015. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosen. Bioelectron. 68:358-64
-
(2015)
Biosen. Bioelectron.
, vol.68
, pp. 358-364
-
-
Sun, Y.1
He, K.2
Zhang, Z.3
Zhou, A.4
Duan, H.5
-
130
-
-
84929456210
-
Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode
-
Sun Y, Fang Z,Wang C, Ariyawansha KRM, Zhou A, Duan H. 2015. Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale 7:7790-801
-
(2015)
Nanoscale
, vol.7
, pp. 7790-7801
-
-
Sun, Y.1
Fang, Z.2
Wang, C.3
Ariyawansha, K.R.M.4
Zhou, A.5
Duan, H.6
-
131
-
-
70349335274
-
Thin, lightweight, foldable thermochromic displays on paper
-
Siegel AC, Phillips ST, Wiley BJ, Whitesides GM. 2009. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 9:2775-81
-
(2009)
Lab Chip
, vol.9
, pp. 2775-2781
-
-
Siegel, A.C.1
Phillips, S.T.2
Wiley, B.J.3
Whitesides, G.M.4
-
132
-
-
84928485705
-
Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection ofmultiple targets
-
Wei X, Tian T, Jia S, Zhu Z, Ma Y, et al. 2015. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection ofmultiple targets. Anal. Chem. 87:4275-82
-
(2015)
Anal. Chem.
, vol.87
, pp. 4275-4282
-
-
Wei, X.1
Tian, T.2
Jia, S.3
Zhu, Z.4
Ma, Y.5
-
133
-
-
84929492691
-
Detection of an amphiphilic biosample in a paper microchannel based on length
-
Chen YT, Yang JT. 2015. Detection of an amphiphilic biosample in a paper microchannel based on length. Biomed. Microdevices 17:9954
-
(2015)
Biomed. Microdevices
, vol.17
, pp. 9954
-
-
Chen, Y.T.1
Yang, J.T.2
-
134
-
-
84934937060
-
Multiplexed paper analytical device for quantification of metals using distance-based detection
-
CateDM, Noblitt SD, Volckens J,Henry CS. 2015. Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 15:2808-18
-
(2015)
Lab Chip
, vol.15
, pp. 2808-2818
-
-
Cate, D.M.1
Noblitt, S.D.2
Volckens, J.3
Henry, C.S.4
-
135
-
-
84906277783
-
Nanoporous membranes enable concentration and transport in fully wet paper-based assays
-
Gong MM, Zhang P, MacDonald BD, Sinton D. 2014. Nanoporous membranes enable concentration and transport in fully wet paper-based assays. Anal. Chem. 86:8090-97
-
(2014)
Anal. Chem.
, vol.86
, pp. 8090-8097
-
-
Gong, M.M.1
Zhang, P.2
MacDonald, B.D.3
Sinton, D.4
|