메뉴 건너뛰기




Volumn 34, Issue , 2015, Pages 758-769

Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images

Author keywords

Conditional spatial FCM; Fuzzy C means; Image segmentation; MRI brain image

Indexed keywords

ALGORITHMS; BRAIN MAPPING; FUZZY CLUSTERING; FUZZY SYSTEMS; IMAGE SEGMENTATION; MAGNETIC RESONANCE IMAGING; MEDICAL IMAGE PROCESSING; MEDICAL IMAGING; MEMBERSHIP FUNCTIONS; PIXELS;

EID: 84934916571     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.05.038     Document Type: Article
Times cited : (162)

References (33)
  • 1
    • 0033640668 scopus 로고    scopus 로고
    • Medical image analysis: Progress over two decades and the challenges ahead
    • J.S. Duncan, and N. Ayache Medical image analysis: progress over two decades and the challenges ahead IEEE Trans. Pattern Anal. Mach. Intell. 22 2000 85 106
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 85-106
    • Duncan, J.S.1    Ayache, N.2
  • 4
    • 0035384134 scopus 로고    scopus 로고
    • Interaction in the segmentation of medical images: A survey
    • S.D. Olabarriaga, and A.W. Smeulders Interaction in the segmentation of medical images: a survey Med. Image Anal. 5 2001 127 142
    • (2001) Med. Image Anal. , vol.5 , pp. 127-142
    • Olabarriaga, S.D.1    Smeulders, A.W.2
  • 5
    • 34250862035 scopus 로고    scopus 로고
    • A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns
    • Li Ma, and R.C. Staunton A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns Pattern Recognit. 40 2007 3005 3011
    • (2007) Pattern Recognit. , vol.40 , pp. 3005-3011
    • Ma, L.1    Staunton, R.C.2
  • 6
    • 7544247572 scopus 로고    scopus 로고
    • Noise sensitivity of watershed segmentation for different connectivity: Experimental study
    • F.B. Tek, A.G. Dempster, and I. Kale Noise sensitivity of watershed segmentation for different connectivity: experimental study Electron. Lett. 40 2004 1332 1333
    • (2004) Electron. Lett. , vol.40 , pp. 1332-1333
    • Tek, F.B.1    Dempster, A.G.2    Kale, I.3
  • 8
    • 0030142628 scopus 로고    scopus 로고
    • Conditional fuzzy C-means
    • W. Pedrycz Conditional fuzzy C-means Pattern Recognit. Lett. 17 1996 625 631
    • (1996) Pattern Recognit. Lett. , vol.17 , pp. 625-631
    • Pedrycz, W.1
  • 9
    • 0032070619 scopus 로고    scopus 로고
    • Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
    • Y.A. Tolias, and S.M. Panas Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 28 1998 359 369
    • (1998) IEEE Trans. Syst. Man Cybern. A: Syst. Hum. , vol.28 , pp. 359-369
    • Tolias, Y.A.1    Panas, S.M.2
  • 10
    • 0343106306 scopus 로고    scopus 로고
    • Modified fuzzy C-means in medical image segmentation
    • N.A. Mohamed, M.N. Ahmed, and A.A. Farag Modified fuzzy C-means in medical image segmentation Proc. IEEE-EMBS 20 2001 1377 1380
    • (2001) Proc. IEEE-EMBS , vol.20 , pp. 1377-1380
    • Mohamed, N.A.1    Ahmed, M.N.2    Farag, A.A.3
  • 11
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    • M. Ahmed, S. Yamany, N. Mohamed, A. Farag, and T. Moriarty A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data IEEE Trans. Med. Imaging 21 2002 193 199
    • (2002) IEEE Trans. Med. Imaging , vol.21 , pp. 193-199
    • Ahmed, M.1    Yamany, S.2    Mohamed, N.3    Farag, A.4    Moriarty, T.5
  • 12
  • 13
    • 0032843554 scopus 로고    scopus 로고
    • An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities
    • D.L. Pham, and J.L. Prince An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities Pattern Recognit. Lett. 20 1999 57 68
    • (1999) Pattern Recognit. Lett. , vol.20 , pp. 57-68
    • Pham, D.L.1    Prince, J.L.2
  • 14
    • 0035502877 scopus 로고    scopus 로고
    • Spatial models for fuzzy clustering
    • D.L. Pham Spatial models for fuzzy clustering Comput. Vis. Image Underst. 84 2001 285 297
    • (2001) Comput. Vis. Image Underst. , vol.84 , pp. 285-297
    • Pham, D.L.1
  • 15
    • 0141857203 scopus 로고    scopus 로고
    • An adaptive spatial fuzzy clustering algorithm for 3D MR image segmentation
    • A.W. Liew, and H. Yan An adaptive spatial fuzzy clustering algorithm for 3D MR image segmentation IEEE Trans. Med. Imaging 22 2003 1063 1075
    • (2003) IEEE Trans. Med. Imaging , vol.22 , pp. 1063-1075
    • Liew, A.W.1    Yan, H.2
  • 16
    • 78651323018 scopus 로고    scopus 로고
    • A framework with modified fast FCM for brain MR images, segmentation
    • Z. Ji, Q. Sun, and D. Xia A framework with modified fast FCM for brain MR images, segmentation Pattern Recognit. 44 2011 999 1013
    • (2011) Pattern Recognit. , vol.44 , pp. 999-1013
    • Ji, Z.1    Sun, Q.2    Xia, D.3
  • 17
    • 77955314103 scopus 로고    scopus 로고
    • A fast and robust image segmentation using FCM with spatial information
    • X. Wang, and J. Bu A fast and robust image segmentation using FCM with spatial information Digit. Signal Process. 20 2010 1173 1182
    • (2010) Digit. Signal Process. , vol.20 , pp. 1173-1182
    • Wang, X.1    Bu, J.2
  • 18
    • 77951276538 scopus 로고    scopus 로고
    • A robust fuzzy local information C-means clustering algorithm
    • S. Krinidis, and V. Chatzis A robust fuzzy local information C-means clustering algorithm IEEE Trans. Image Process. 19 2010 1328 1337
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 1328-1337
    • Krinidis, S.1    Chatzis, V.2
  • 19
    • 0036157616 scopus 로고    scopus 로고
    • Multivariate image segmentation based on geometrically guided fuzzy C-means clustering
    • J.C. Noordam, and W.H.A.M. Broek Multivariate image segmentation based on geometrically guided fuzzy C-means clustering J. Chemom. 16 2002 1 11
    • (2002) J. Chemom. , vol.16 , pp. 1-11
    • Noordam, J.C.1    Broek, W.H.A.M.2
  • 20
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
    • S. Chen, and D. Zhang Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure IEEE Trans. Syst. Man Cybern. B: Cybern. 34 2004 1907 1916
    • (2004) IEEE Trans. Syst. Man Cybern. B: Cybern. , vol.34 , pp. 1907-1916
    • Chen, S.1    Zhang, D.2
  • 21
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation
    • W. Cai, S. Chen, and D. Zhang Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation Pattern Recognit. 40 2007 835 838
    • (2007) Pattern Recognit. , vol.40 , pp. 835-838
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 22
    • 84885376272 scopus 로고    scopus 로고
    • An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
    • Z. Wang, Q. Song, Y.C. Soh, and K. Sim An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation Comput. Vis. Image Underst. 117 2013 1412 1420
    • (2013) Comput. Vis. Image Underst. , vol.117 , pp. 1412-1420
    • Wang, Z.1    Song, Q.2    Soh, Y.C.3    Sim, K.4
  • 23
  • 24
    • 84878345544 scopus 로고    scopus 로고
    • A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation
    • C. Qiu, J. Xiao, L. Yu, L. Han, and M.N. Iqbal A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation Pattern Recognit. Lett. 34 2013 1329 1338
    • (2013) Pattern Recognit. Lett. , vol.34 , pp. 1329-1338
    • Qiu, C.1    Xiao, J.2    Yu, L.3    Han, L.4    Iqbal, M.N.5
  • 25
    • 84882453404 scopus 로고    scopus 로고
    • Improved spatial fuzzy C-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction
    • A.N. Benaichouche, H. Oulhadj, and P. Siarry Improved spatial fuzzy C-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction Digit. Signal Process. 23 2013 1390 1400
    • (2013) Digit. Signal Process. , vol.23 , pp. 1390-1400
    • Benaichouche, A.N.1    Oulhadj, H.2    Siarry, P.3
  • 30
    • 21544432712 scopus 로고    scopus 로고
    • BrainWeb Online interface to a 3D MRI simulated brain database
    • 425-425
    • C.A. Cocosco, V. Kollokian, K.R.K.S. Kwan, and A.C. Evans BrainWeb Online interface to a 3D MRI simulated brain database Neuroimage 5 1997 425-425
    • (1997) Neuroimage , vol.5
    • Cocosco, C.A.1    Kollokian, V.2    Kwan, K.R.K.S.3    Evans, A.C.4
  • 31
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • J.C. Bezdek Cluster validity with fuzzy sets J. Cybern. 3 1973 58 73
    • (1973) J. Cybern. , vol.3 , pp. 58-73
    • Bezdek, J.C.1
  • 33
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost, and T. Fawcett Robust classification for imprecise environments Mach. Learn. 42 2001 203 231
    • (2001) Mach. Learn. , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.