-
2
-
-
0004096761
-
-
Sage Publications, Thousand Oaks
-
Arrow H, McGrath JE, Berdahl JL (2000) Small groups as complex systems: formation, coordination, development. Sage Publications, Thousand Oaks
-
(2000)
Small groups as complex systems: formation, coordination, development
-
-
Arrow, H.1
McGrath, J.E.2
Berdahl, J.L.3
-
4
-
-
0011728961
-
The amount of information that y gives about X
-
Blachman NM (1968) The amount of information that y gives about X. IEEE Trans Inf Theory 14(1):27–31 DOI: 10.1109/TIT.1968.1054094
-
(1968)
IEEE Trans Inf Theory
, vol.14
, Issue.1
, pp. 27-31
-
-
Blachman, N.M.1
-
5
-
-
0024103809
-
PRISM: an algorithm for inducing modular rules
-
Cendrowska J (1987) PRISM: an algorithm for inducing modular rules. Int J Man Mach Stud 27:349–370 DOI: 10.1016/S0020-7373(87)80003-2
-
(1987)
Int J Man Mach Stud
, vol.27
, pp. 349-370
-
-
Cendrowska, J.1
-
6
-
-
0012325256
-
An analysis of reduced error pruning
-
Elomaa T, Kääriäinen M (2001) An analysis of reduced error pruning. J Artif Intell Res 15:163–187
-
(2001)
J Artif Intell Res
, vol.15
, pp. 163-187
-
-
Elomaa, T.1
Kääriäinen, M.2
-
7
-
-
0033075882
-
Separate-and-conquer rule learning
-
Fürnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev 13:3–54 DOI: 10.1023/A:1006524209794
-
(1999)
Artif Intell Rev
, vol.13
, pp. 3-54
-
-
Fürnkranz, J.1
-
10
-
-
33749319347
-
Interestingness measures for data mining: a survey
-
Geng L, Hamilton HJ (2006) Interestingness measures for data mining: a survey. ACM Comput Surv 38(3):9 DOI: 10.1145/1132960.1132963
-
(2006)
ACM Comput Surv
, vol.38
, Issue.3
, pp. 9
-
-
Geng, L.1
Hamilton, H.J.2
-
11
-
-
70450043328
-
Machine Learning as Granular Computing
-
China, p
-
Hu H, Shi Z (2009) Machine Learning as Granular Computing. In: IEEE International Conference on Granular Computing, Nanchang, IEEE, China, p 229–234
-
(2009)
IEEE International Conference on Granular Computing, Nanchang, IEEE
, pp. 229-234
-
-
Hu, H.1
Shi, Z.2
-
13
-
-
85132948047
-
Collaborative Decision Making by Ensemble Rule Based Classification Systems
-
Pedrycz W, Chen S-M, Springer, Switzerland
-
Liu H, Gegov A (2015) Collaborative Decision Making by Ensemble Rule Based Classification Systems. In: Pedrycz W, Chen S-M (eds), Granular computing and decision making: interactive and iterative approaches, Vol. 10. Springer, Switzerland, p 245–264
-
(2015)
Granular Computing and Decision Making: Interactive and Iterative Approaches
, vol.10
, pp. 245-264
-
-
Liu, H.1
Gegov, A.2
-
14
-
-
84906536916
-
Categorization and Construction of Rule Based Systems
-
Springer, Sofia
-
Liu H, Gegov A, Stahl F (2014) Categorization and Construction of Rule Based Systems. In: 15th Inter-national Conference on Engineering Applications of Neural Networks, Springer, Sofia, p 183–194
-
(2014)
15Th Inter-National Conference on Engineering Applications of Neural Networks
, pp. 183-194
-
-
Liu, H.1
Gegov, A.2
Stahl, F.3
-
15
-
-
84955406986
-
Network Based Rule Representation for Knowledge Discovery and Predictive Modelling
-
Liu H, Gegov A, Cocea M (2015) Network Based Rule Representation for Knowledge Discovery and Predictive Modelling. IEEE International Conference on Fuzzy Systems, IEEE, Istanbul, p 1–8
-
(2015)
IEEE International Conference on Fuzzy Systems, IEEE, Istanbul, P
, pp. 1-8
-
-
Liu, H.1
Gegov, A.2
Cocea, M.3
-
16
-
-
85051260143
-
Unified Framework for Construction of Rule Based Classification Systems
-
Pedrycz W, Chen S-M, Springer, Berlin
-
Liu H, Gegov A, Stahl F (2015) Unified Framework for Construction of Rule Based Classification Systems. In: Pedrycz W, Chen S-M (eds.) Inforamtion Granularity, Big Data and Computational Intelligence, Vol. 8. Springer, Berlin, p 209–230
-
(2015)
Inforamtion Granularity, Big Data and Computational Intelligence
, vol.8
, pp. 209-230
-
-
Liu, H.1
Gegov, A.2
Stahl, F.3
-
17
-
-
84961662080
-
Interpretability of Computational Models for Sentiment Analysis
-
Pedrycz W, Chen S-M, (eds), Springer, Switzerland
-
Liu H, Cocea M, Gegov A (2016a) Interpretability of Computational Models for Sentiment Analysis. In: Pedrycz W, Chen S-M (eds) Sentiment analysis and ontology engineering: an environment of computational intelligence. Springer, Switzerland, pp 199–220 DOI: 10.1007/978-3-319-30319-2_9
-
(2016)
Sentiment analysis and ontology engineering: an environment of computational intelligence
, pp. 199-220
-
-
Liu, H.1
Cocea, M.2
Gegov, A.3
-
19
-
-
27744565978
-
Rough sets
-
Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356 DOI: 10.1007/BF01001956
-
(1982)
Int J Comput Inform Sci
, vol.11
, Issue.5
, pp. 341-356
-
-
Pawlak, Z.1
-
20
-
-
3042534442
-
A review of methods for missing data
-
Pigott TD (2001) A review of methods for missing data. Edu Res Eval 7(4):353–383 DOI: 10.1076/edre.7.4.353.8937
-
(2001)
Edu Res Eval
, vol.7
, Issue.4
, pp. 353-383
-
-
Pigott, T.D.1
-
21
-
-
33744584654
-
Induction of decision trees
-
Quinlan R (1986) Induction of decision trees. Mach Learn 1:81–106
-
(1986)
Mach Learn
, vol.1
, pp. 81-106
-
-
Quinlan, R.1
-
24
-
-
84940644968
-
A mathematical theory of communication
-
Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423 DOI: 10.1002/j.1538-7305.1948.tb01338.x
-
(1948)
Bell Syst Tech J
, vol.27
, Issue.3
, pp. 379-423
-
-
Shannon, C.1
-
25
-
-
0026902042
-
An information theoretic approach to rule induction from databases
-
Smyth P, Rodney GM (1992) An information theoretic approach to rule induction from databases. IEEE Trans Knowl Data Eng 4(4):301–316 DOI: 10.1109/69.149926
-
(1992)
IEEE Trans Knowl Data Eng
, vol.4
, Issue.4
, pp. 301-316
-
-
Smyth, P.1
Rodney, G.M.2
-
26
-
-
1242308945
-
Selecting the right objective measure for association analysis
-
Tan P-N, Kumar V, Srivastava J (2004) Selecting the right objective measure for association analysis. Inf Syst 29(4):293–313 DOI: 10.1016/S0306-4379(03)00072-3
-
(2004)
Inf Syst
, vol.29
, Issue.4
, pp. 293-313
-
-
Tan, P.-N.1
Kumar, V.2
Srivastava, J.3
-
29
-
-
33747369668
-
(2006). Granular Computing for Data Mining
-
Information Assurance, and Data Networks Security, Kissimmee
-
Yao, Y. (2006). Granular Computing for Data Mining. In: Proceedings of SPIE Conference on Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security, Kissimmee, p 1–12
-
Proceedings of SPIE Conference on Data Mining, Intrusion Detection
, pp. 1-12
-
-
Yao, Y.1
-
30
-
-
84942867320
-
Induction of Classification Rules by Granular Computing
-
Alpigini JF, Peters JF, Skowron A, Zhong N, Springer, Berlin
-
Yao J, Yao Y (2002) Induction of Classification Rules by Granular Computing. In: Alpigini JF, Peters JF, Skowron A, Zhong N (eds) Rough sets and current trends in computing, Vol. 2475. Springer, Berlin, p 331–338
-
(2002)
Rough Sets and Current Trends in Computing
, vol.2475
, pp. 331-338
-
-
Yao, J.1
Yao, Y.2
-
31
-
-
0002263693
-
Fuzzy sets and information granulation
-
Gupta MM, Ragade RK, Yager RR, North-Holland Publishing Company, Amsterdam
-
Zadeh LA (1979) Fuzzy sets and information granulation. In: Gupta MM, Ragade RK, Yager RR (eds) Advances in Fuzzy Set Theory and Applications, North-Holland Publishing Company, Amsterdam, p 3–18
-
(1979)
Advances in Fuzzy Set Theory and Applications
, pp. 3-18
-
-
Zadeh, L.A.1
-
32
-
-
1642469977
-
Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
-
Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90(2):111–127 DOI: 10.1016/S0165-0114(97)00077-8
-
(1997)
Fuzzy Sets Syst
, vol.90
, Issue.2
, pp. 111-127
-
-
Zadeh, L.A.1
|