메뉴 건너뛰기




Volumn WS-14-13, Issue , 2014, Pages 76-82

A sparse parameter learning method for probabilistic logic programs

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTATION THEORY; COMPUTER CIRCUITS; GRADIENT METHODS; KNOWLEDGE REPRESENTATION; LEARNING ALGORITHMS; LOGIC PROGRAMMING; OPTIMIZATION; PROBABILISTIC LOGICS; RECONFIGURABLE HARDWARE;

EID: 84974794165     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (25)
  • 2
    • 84864851742 scopus 로고    scopus 로고
    • Learning the structure of probabilistic logic programs
    • Bellodi, E., and Riguzzi, F. 2012. Learning the structure of probabilistic logic programs. In Inductive Logic Programming, 61-75.
    • (2012) Inductive Logic Programming , pp. 61-75
    • Bellodi, E.1    Riguzzi, F.2
  • 3
    • 0016948909 scopus 로고
    • On the goldstein-levitin-polyak gradient projection method
    • Bertsekas, D. 1976. On the goldstein-levitin-polyak gradient projection method. Automatic Control, IEEE Transactions on 21(2):174-184.
    • (1976) Automatic Control, IEEE Transactions on , vol.21 , Issue.2 , pp. 174-184
    • Bertsekas, D.1
  • 5
    • 0022769976 scopus 로고
    • Graph-based algorithms for boolean function manipulation
    • Bryant, R. E. 1986. Graph-based algorithms for boolean function manipulation. Computers, IEEE Trans, on 100(8) :677-691.
    • (1986) Computers, IEEE Trans, on , vol.100 , Issue.8 , pp. 677-691
    • Bryant, R.E.1
  • 6
    • 0023416451 scopus 로고
    • Projected gradient methods for linearly constrained problems
    • Calamai, R H., and Moré, J. J. 1987. Projected gradient methods for linearly constrained problems. Mathematical Programming 39(1):93-116.
    • (1987) Mathematical Programming , vol.39 , Issue.1 , pp. 93-116
    • Calamai, R.H.1    Moré, J.J.2
  • 7
    • 0035312953 scopus 로고    scopus 로고
    • Relational learning with statistical predicate invention: Better models for hypertext
    • Craven, M., and Slattery, S. 2001. Relational learning with statistical predicate invention: Better models for hypertext. Machine Learning 43(1-2):97-119.
    • (2001) Machine Learning , vol.43 , Issue.1-2 , pp. 97-119
    • Craven, M.1    Slattery, S.2
  • 8
    • 0035451897 scopus 로고    scopus 로고
    • Parameter estimation in stochastic logic programs
    • Cussens, J. 2001. Parameter estimation in stochastic logic programs. Machine Learning 44(3):245-271.
    • (2001) Machine Learning , vol.44 , Issue.3 , pp. 245-271
    • Cussens, J.1
  • 9
    • 2942671259 scopus 로고    scopus 로고
    • A knowledge compilation map
    • Darwiche, A., and Marquis, P. 2002. A knowledge compilation map. JAIR 17:229-264.
    • (2002) JAIR , vol.17 , pp. 229-264
    • Darwiche, A.1    Marquis, P.2
  • 12
    • 84880905111 scopus 로고    scopus 로고
    • Problog: A probabilistic prolog and its application in link discovery
    • De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. Problog: A probabilistic prolog and its application in link discovery. In IJCAI, 2462-2467.
    • (2007) IJCAI , pp. 2462-2467
    • De Raedt, L.1    Kimmig, A.2    Toivonen, H.3
  • 16
    • 56049106173 scopus 로고    scopus 로고
    • Parameter learning in probabilistic databases: A least squares approach
    • Gutmann, B.; Kimmig, A.; Kersting, K.; and De Raedt, L. 2008. Parameter learning in probabilistic databases: A least squares approach. In ECMUPKDD, 473-488.
    • (2008) ECMUPKDD , pp. 473-488
    • Gutmann, B.1    Kimmig, A.2    Kersting, K.3    De Raedt, L.4
  • 17
    • 80052395874 scopus 로고    scopus 로고
    • Learning the parameters of probabilistic logic programs from interpretations
    • Gutmann, B.; Thon, I.; and De Raedt, L. 2011. Learning the parameters of probabilistic logic programs from interpretations. In ECMUPKDD, 581-596.
    • (2011) ECMUPKDD , pp. 581-596
    • Gutmann, B.1    Thon, I.2    De Raedt, L.3
  • 18
    • 84988662117 scopus 로고    scopus 로고
    • Online structure learning for markov logic networks
    • Huynh, T. N., and Mooney, R. J. 2011. Online structure learning for markov logic networks. In ECMUPKDD.
    • (2011) ECMUPKDD
    • Huynh, T.N.1    Mooney, R.J.2
  • 21
  • 23
    • 4444281941 scopus 로고    scopus 로고
    • Parameter learning of logic programs for symbolic-statistical modeling
    • Sato, T., and Kameya, Y. 2001. Parameter learning of logic programs for symbolic-statistical modeling. JAIR 15:391-454.
    • (2001) JAIR , vol.15 , pp. 391-454
    • Sato, T.1    Kameya, Y.2
  • 24
    • 22944492294 scopus 로고
    • A statistical learning method for logic programs with distribution semantics
    • Sato, T. 1995. A statistical learning method for logic programs with distribution semantics. In ICLP, 715-729.
    • (1995) ICLP , pp. 715-729
    • Sato, T.1
  • 25
    • 0028565947 scopus 로고
    • Inducing deterministic prolog parsers from treebanks: A machine learning approach
    • Zelle, J. M., and Mooney, R. J. 1994. Inducing deterministic prolog parsers from treebanks: A machine learning approach. In AAAI, 748-753.
    • (1994) AAAI , pp. 748-753
    • Zelle, J.M.1    Mooney, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.