메뉴 건너뛰기




Volumn 4911 LNAI, Issue , 2008, Pages 222-243

The independent choice logic and beyond

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER PROGRAMMING; FUZZY LOGIC; LOGIC PROGRAMMING; PROBABILITY DISTRIBUTIONS; RANDOM PROCESSES; RISK ASSESSMENT; SET THEORY;

EID: 40249108384     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-78652-8_8     Document Type: Article
Times cited : (91)

References (58)
  • 2
    • 0012312949 scopus 로고    scopus 로고
    • State abstraction for programmable reinforcement learning agents
    • Andre, D., Russell, S.: State abstraction for programmable reinforcement learning agents. In: Proc. AAAI 2002 (2002)
    • (2002) Proc. AAAI 2002
    • Andre, D.1    Russell, S.2
  • 6
    • 0018235476 scopus 로고
    • Diagnostic models for procedural bugs in basic mathematical skills
    • Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science 2, 155-191 (1978)
    • (1978) Cognitive Science , vol.2 , pp. 155-191
    • Brown, J.S.1    Burton, R.R.2
  • 11
    • 0000826543 scopus 로고
    • Negation as failure
    • Gallaire, H, Minker, J, eds, Plenum Press, New York
    • Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293-322. Plenum Press, New York (1978)
    • (1978) Logic and Databases , pp. 293-322
    • Clark, K.L.1
  • 12
    • 33644863766 scopus 로고    scopus 로고
    • Inference in hybrid bayesian networks with mixtures of truncated exponentials
    • Cobba, B.R., Shenoy, P.P.: Inference in hybrid bayesian networks with mixtures of truncated exponentials. International Journal of Approximate Reasoning 41(3), 257-286 (2006)
    • (2006) International Journal of Approximate Reasoning , vol.41 , Issue.3 , pp. 257-286
    • Cobba, B.R.1    Shenoy, P.P.2
  • 13
    • 40249111107 scopus 로고    scopus 로고
    • Cozman, F., Krotkov, E.: Truncated gaussians as tolerance sets. Technical Report CMU-RI-TR-94-35, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (September 1994)
    • Cozman, F., Krotkov, E.: Truncated gaussians as tolerance sets. Technical Report CMU-RI-TR-94-35, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (September 1994)
  • 14
    • 0035250750 scopus 로고    scopus 로고
    • Recursive conditioning
    • Darwiche, A.: Recursive conditioning. Artificial Intelligence 126(1-2), 5-41 (2001)
    • (2001) Artificial Intelligence , vol.126 , Issue.1-2 , pp. 5-41
    • Darwiche, A.1
  • 17
    • 40249089435 scopus 로고    scopus 로고
    • Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure. In: UAI 1996, pp. 252-262 (1996), http://www2.sis.pitt.edu/~dsl/UAI/ UAI96/ Friedmanl.UAI96.html
    • Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure. In: UAI 1996, pp. 252-262 (1996), http://www2.sis.pitt.edu/~dsl/UAI/ UAI96/ Friedmanl.UAI96.html
  • 18
    • 0001119421 scopus 로고
    • The stable model semantics for logic programming
    • Kowalski, R, Bowen, K, eds, Cambridge, MA, pp
    • Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth Logic Programming Symposium, Cambridge, MA, pp. 1070-1080 (1988)
    • (1988) Proceedings of the Fifth Logic Programming Symposium , pp. 1070-1080
    • Gelfond, M.1    Lifschitz, V.2
  • 19
    • 0041779094 scopus 로고    scopus 로고
    • Learning probabilistic relational models
    • Dzeroski, S, Lavrac, N, eds, Springer, Heidelberg
    • Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 307-337. Springer, Heidelberg (2001)
    • (2001) Relational Data Mining , pp. 307-337
    • Getoor, L.1    Friedman, N.2    Koller, D.3    Pfeffer, A.4
  • 20
    • 40249112686 scopus 로고    scopus 로고
    • Heckerman, D.: A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, March 1995. URL Revised (November 1996). http: //www. research.microsoft.com/research/dtg/heckerma/heckerma.html
    • Heckerman, D.: A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, March 1995. URL Revised (November 1996). http: //www. research.microsoft.com/research/dtg/heckerma/heckerma.html
  • 21
    • 40249099780 scopus 로고    scopus 로고
    • Heckerman. D.. Meek. C., Koller. D.: Probabilistic models for relational data. Technical Report MSR-TR-2004-30, Microsoft Research (March 2004)
    • Heckerman. D.. Meek. C., Koller. D.: Probabilistic models for relational data. Technical Report MSR-TR-2004-30, Microsoft Research (March 2004)
  • 22
    • 0344614857 scopus 로고
    • A dynamic approach to probabilistic inference using Bayesian networks
    • Boston, July
    • Horsch, M., Poole, D.: A dynamic approach to probabilistic inference using Bayesian networks. In: Proc. Sixth Conference on Uncertainty in AI, Boston, July 1990, pp. 155-161 (1990)
    • (1990) Proc. Sixth Conference on Uncertainty in AI , pp. 155-161
    • Horsch, M.1    Poole, D.2
  • 23
  • 24
    • 40249107890 scopus 로고    scopus 로고
    • Laskey, K.B., da Costa, P.G.C.: Of klingons and starships: Bayesian logic for the 23rd century. In: Uncertainty in Artificial Intelligence: Proceedings of the Twenty-First Conference (2005)
    • Laskey, K.B., da Costa, P.G.C.: Of klingons and starships: Bayesian logic for the 23rd century. In: Uncertainty in Artificial Intelligence: Proceedings of the Twenty-First Conference (2005)
  • 25
    • 0344243483 scopus 로고    scopus 로고
    • Answer set programming and plan generation
    • Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2), 39-54 (2002)
    • (2002) Artificial Intelligence , vol.138 , Issue.1-2 , pp. 39-54
    • Lifschitz, V.1
  • 26
    • 0003453263 scopus 로고
    • Foundations of Logic Programming
    • 2nd edn, Springer, Berlin
    • Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Symbolic Computation Series. Springer, Berlin (1987)
    • (1987) Symbolic Computation Series
    • Lloyd, J.W.1
  • 28
    • 0002205343 scopus 로고    scopus 로고
    • Stochastic logic programs
    • De Raedt, L, ed, IOS Press, Amsterdam
    • Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 254-264. IOS Press, Amsterdam (1996)
    • (1996) Advances in Inductive Logic Programming , pp. 254-264
    • Muggleton, S.1
  • 29
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13(3-4), 245-286 (1995)
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 245-286
    • Muggleton, S.1
  • 30
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19(20), 629-679 (1994)
    • (1994) Journal of Logic Programming , vol.19 , Issue.20 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.2
  • 32
    • 0026005474 scopus 로고
    • Logic and artificial intelligence
    • Nilsson, N.J.: Logic and artificial intelligence. Artificial Intelligence 47, 31-56 (1991)
    • (1991) Artificial Intelligence , vol.47 , pp. 31-56
    • Nilsson, N.J.1
  • 36
    • 84880881676 scopus 로고    scopus 로고
    • IBAL: A probabilistic rational programming language
    • Pfeffer, A.: IBAL: A probabilistic rational programming language. In: IJCAI 2001 (2001), http ://www.eecs.harvard.edu/~avi/Papers/ibal.ijcai01.ps
    • (2001) IJCAI 2001
    • Pfeffer, A.1
  • 37
    • 36348939832 scopus 로고    scopus 로고
    • Logical generative models for probabilistic reasoning about existence, roles and identity
    • Poole, D.: Logical generative models for probabilistic reasoning about existence, roles and identity. In: 22nd AAAI Conference on AI (AAAI 2007) (2007)
    • (2007) 22nd AAAI Conference on AI (AAAI
    • Poole, D.1
  • 38
    • 0343128485 scopus 로고    scopus 로고
    • Learning, Bayesian probability, graphical models, and abduction
    • Flach, P, Kakas, A, eds, Kluwer, Dordrecht
    • Poole, D.: Learning, Bayesian probability, graphical models, and abduction. In: Flach, P., Kakas, A. (eds.) Abduction and Induction: Essays on their relation and integration, Kluwer, Dordrecht (2000a)
    • (2000) Abduction and Induction: Essays on their relation and integration
    • Poole, D.1
  • 40
    • 84990556284 scopus 로고
    • Explanation and prediction: An architecture for default and abductive reasoning
    • Poole, D.: Explanation and prediction: An architecture for default and abductive reasoning. Computational Intelligence 5(2), 97-110 (1989)
    • (1989) Computational Intelligence , vol.5 , Issue.2 , pp. 97-110
    • Poole, D.1
  • 41
    • 0025645515 scopus 로고
    • A methodology for using a default and abductive reasoning system
    • Poole, D.: A methodology for using a default and abductive reasoning system. International Journal of Intelligent Systems 5(5), 521-548 (1990)
    • (1990) International Journal of Intelligent Systems , vol.5 , Issue.5 , pp. 521-548
    • Poole, D.1
  • 42
    • 0002125156 scopus 로고
    • Representing diagnostic knowledge for probabilistic Horn abduction
    • Sydney, pp, August
    • Poole, D.: Representing diagnostic knowledge for probabilistic Horn abduction. In: IJCAI 1991, Sydney, pp. 1129-1135 (August 1991a)
    • (1991) IJCAI , pp. 1129-1135
    • Poole, D.1
  • 43
    • 0345682568 scopus 로고
    • Representing Bayesian networks within probabilistic Horn abduction
    • Los Angeles, July, 1991b
    • Poole, D.: Representing Bayesian networks within probabilistic Horn abduction. In: UAI 1991, Los Angeles, July 1991, pp. 271-278 (1991b)
    • (1991) UAI , pp. 271-278
    • Poole, D.1
  • 44
    • 0041471704 scopus 로고
    • Logic programming, abduction and probability: A top-down anytime algorithm for computing prior and posterior probabilities
    • Poole, D.: Logic programming, abduction and probability: A top-down anytime algorithm for computing prior and posterior probabilities. New Generation Computing 11(3-4), 377-400 (1993a)
    • (1993) New Generation Computing , vol.11 , Issue.3-4 , pp. 377-400
    • Poole, D.1
  • 45
    • 0027702434 scopus 로고
    • Probabilistic Horn abduction and Bayesian networks
    • Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1), 81-129 (1993b)
    • (1993) Artificial Intelligence , vol.64 , Issue.1 , pp. 81-129
    • Poole, D.1
  • 46
    • 0030416993 scopus 로고    scopus 로고
    • Probabilistic conflicts in a search algorithm for estimating posterior probabilities in Bayesian networks
    • Poole, D.: Probabilistic conflicts in a search algorithm for estimating posterior probabilities in Bayesian networks. Artificial Intelligence 88, 69-100 (1996)
    • (1996) Artificial Intelligence , vol.88 , pp. 69-100
    • Poole, D.1
  • 47
    • 84880668827 scopus 로고    scopus 로고
    • Probabilistic partial evaluation: Exploiting rule structure in probabilistic inference
    • Nagoya, Japan, pp
    • Poole, D.: Probabilistic partial evaluation: Exploiting rule structure in probabilistic inference. In: IJCAI 1997, Nagoya, Japan, pp. 1284-1291 (1997a), http://www.cs.ubc.ca/spider/poole/abstracts/pro-pa.html
    • (1997) IJCAI , pp. 1284-1291
    • Poole, D.1
  • 48
    • 0031187203 scopus 로고    scopus 로고
    • Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94, 7-56 (special issue on economic principles of multi-agent systems) (1997b), http://www.cs.ubc.ca/spider/poole/ abstracts/ici.html
    • Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94, 7-56 (special issue on economic principles of multi-agent systems) (1997b), http://www.cs.ubc.ca/spider/poole/ abstracts/ici.html
  • 49
    • 0034230835 scopus 로고    scopus 로고
    • Abducing through negation as failure: Stable models in the Independent Choice Logic
    • Poole, D.: Abducing through negation as failure: stable models in the Independent Choice Logic. Journal of Logic Programming 44(1-3). 5-35 (2000), http://www.cs.ubc.ca/spider/poole/abstracts/abnaf.html
    • (2000) Journal of Logic Programming , vol.44 , Issue.1-3 , pp. 5-35
    • Poole, D.1
  • 50
  • 52
    • 0000431236 scopus 로고
    • Induction of logic programs: FOIL and related systems
    • Quinlan, J.R., Cameron-Jones, R.M.: Induction of logic programs: FOIL and related systems. New Generation Computing 13(3-4), 287-312 (1995)
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 287-312
    • Quinlan, J.R.1    Cameron-Jones, R.M.2
  • 54
    • 4444281941 scopus 로고    scopus 로고
    • Parameter learning of logic programs for symbolic-statistical modeling
    • Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. Journal of Artificial Intelligence Research (JAIR) 15, 391-454 (2001)
    • (2001) Journal of Artificial Intelligence Research (JAIR) , vol.15 , pp. 391-454
    • Sato, T.1    Kameya, Y.2
  • 56
    • 40249090949 scopus 로고    scopus 로고
    • Shanahan, M.: Prediction is deduction, but explanation is abduction. In: IJCAI-1989, Detroit, MI, pp. 1055-1060 (August 1989)
    • Shanahan, M.: Prediction is deduction, but explanation is abduction. In: IJCAI-1989, Detroit, MI, pp. 1055-1060 (August 1989)
  • 57
    • 0033705011 scopus 로고    scopus 로고
    • Towards programming tools for robots that integrate probabilistic computation and learning
    • San Francisco, CA, IEEE, Los Alamitos
    • Thrun, S.: Towards programming tools for robots that integrate probabilistic computation and learning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, IEEE, Los Alamitos (2000)
    • (2000) Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
    • Thrun, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.