메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1967-1975

An MRF-poselets model for detecting highly articulated humans

Author keywords

[No Author keywords available]

Indexed keywords

MARKOV PROCESSES;

EID: 84973926599     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.228     Document Type: Conference Paper
Times cited : (2)

References (40)
  • 1
    • 70450203723 scopus 로고    scopus 로고
    • Pictorial structures revisited: People detection and articulated pose estimation
    • 1, 2
    • M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated pose estimation. In CVPR, pages 1014-1021, 2009. 1, 2
    • (2009) CVPR , pp. 1014-1021
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 3
    • 84866719946 scopus 로고    scopus 로고
    • Pedestrian detection at 100 frames per second
    • 1
    • R. Benenson, M. Mathias, R. Timofte, and L. V. Gool. Pedestrian detection at 100 frames per second. In CVPR, pages 2903-2910, 2012. 1
    • (2012) CVPR , pp. 2903-2910
    • Benenson, R.1    Mathias, M.2    Timofte, R.3    Gool, L.V.4
  • 4
  • 6
    • 78149356001 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • 1, 2, 3, 4, 5, 6, 7, 8
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, pages 168-181, 2010. 1, 2, 3, 4, 5, 6, 7, 8
    • (2010) ECCV , pp. 168-181
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 7
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • 1, 2, 3, 6, 7
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose annotations. In ICCV, pages 1365-1372, 2009. 1, 2, 3, 6, 7
    • (2009) ICCV , pp. 1365-1372
    • Bourdev, L.1    Malik, J.2
  • 9
    • 80052887473 scopus 로고    scopus 로고
    • Object segmentation by alignment of poselet activations to image contours
    • 2
    • T. Brox, L. Bourdev, S. Maji, and J. Malik. Object segmentation by alignment of poselet activations to image contours. In CVPR, pages 2225-2232, 2011. 2
    • (2011) CVPR , pp. 2225-2232
    • Brox, T.1    Bourdev, L.2    Maji, S.3    Malik, J.4
  • 10
    • 84911395592 scopus 로고    scopus 로고
    • Word channel based multiscale pedestrian detection without image resizing and using only one classifier
    • 1
    • A. D. Costea and S. Nedevschi. Word channel based multiscale pedestrian detection without image resizing and using only one classifier. In CVPR, pages 2393-2400, 2014. 1
    • (2014) CVPR , pp. 2393-2400
    • Costea, A.D.1    Nedevschi, S.2
  • 11
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1, 2, 3
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, pages 886-893, 2005. 1, 2, 3
    • (2005) CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 12
    • 84903622275 scopus 로고    scopus 로고
    • Fast feature pyramids for object detection
    • 1
    • P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. PAMI, pages 1-14, 2014. 1
    • (2014) PAMI , pp. 1-14
    • Dollár, P.1    Appel, R.2    Belongie, S.3    Perona, P.4
  • 13
    • 84857435937 scopus 로고    scopus 로고
    • Pedestrian detection: An evaluation of the state of the art
    • 1
    • P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. PAMI, 34(4):743-761, 2012. 1
    • (2012) PAMI , vol.34 , Issue.4 , pp. 743-761
    • Dollár, P.1    Wojek, C.2    Schiele, B.3    Perona, P.4
  • 14
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (voc) challenge
    • 6
    • M. Everingham, L. van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303-338, 2010. 6
    • (2010) IJCV , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1    Van Gool, L.2    Williams, C.3    Winn, J.4    Zisserman, A.5
  • 15
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 1, 2, 6, 7, 8
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9):1627-1645, 2010. 1, 2, 6, 7, 8
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 16
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • 1, 6, 7
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, pages 1-8, 2008. 1, 6, 7
    • (2008) CVPR , pp. 1-8
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 17
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • 4
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1):55-79, 2005. 4
    • (2005) IJCV , vol.61 , Issue.1 , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 18
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1, 7
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014. 1, 7
    • (2014) CVPR , pp. 580-587
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 19
    • 84911427286 scopus 로고    scopus 로고
    • Using k-poselets for detecting people and localizing their keypoints
    • 1, 2, 6, 7, 8
    • G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Using k-poselets for detecting people and localizing their keypoints. In CVPR, pages 3582-3589, 2014. 1, 2, 6, 7, 8
    • (2014) CVPR , pp. 3582-3589
    • Gkioxari, G.1    Hariharan, B.2    Girshick, R.3    Malik, J.4
  • 21
    • 84898427819 scopus 로고    scopus 로고
    • Feature sets and dimensionality reduction for visual object detection
    • 1
    • S. Hussain and B. Triggs. Feature sets and dimensionality reduction for visual object detection. In BMVC, pages 1-10, 2010. 1
    • (2010) BMVC , pp. 1-10
    • Hussain, S.1    Triggs, B.2
  • 23
  • 25
    • 33744792263 scopus 로고    scopus 로고
    • Pedestrian detection in crowded scenes
    • 1, 2
    • B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. In CVPR, pages 878-885, 2005. 1, 2
    • (2005) CVPR , pp. 878-885
    • Leibe, B.1    Seemann, E.2    Schiele, B.3
  • 26
    • 80052880806 scopus 로고    scopus 로고
    • Action recognition from a distributed representation of pose and appearance
    • 2
    • S. Maji, L. Bourdev, and J. Malik. Action recognition from a distributed representation of pose and appearance. In CVPR, pages 3177-3184, 2011. 2
    • (2011) CVPR , pp. 3177-3184
    • Maji, S.1    Bourdev, L.2    Malik, J.3
  • 27
    • 70450186102 scopus 로고    scopus 로고
    • Object detection using a max-margin hough tranform
    • 1
    • S. Maji and J. Malik. Object detection using a max-margin hough tranform. In CVPR, 2009. 1
    • (2009) CVPR
    • Maji, S.1    Malik, J.2
  • 28
    • 67349091087 scopus 로고    scopus 로고
    • Mean field approach for tracking similar objects
    • 4
    • C. Medrano, J. E. Herrero, J. Martínez, and C. Orrite. Mean field approach for tracking similar objects. CVIU, 113:907-920, 2009. 4
    • (2009) CVIU , vol.113 , pp. 907-920
    • Medrano, C.1    Herrero, J.E.2    Martínez, J.3    Orrite, C.4
  • 29
    • 84911442509 scopus 로고    scopus 로고
    • A novel chamfer template matching method using variational mean field
    • 4
    • D. T. Nguyen. A novel chamfer template matching method using variational mean field. In CVPR, pages 2425-2432, 2014. 4
    • (2014) CVPR , pp. 2425-2432
    • Nguyen, D.T.1
  • 30
    • 84876122150 scopus 로고    scopus 로고
    • Inter-occlusion reasoning for human detection based on variational mean field
    • 4
    • D. T. Nguyen, W. Li, and P. Ogunbona. Inter-occlusion reasoning for human detection based on variational mean field. Neurocomputing, 110:51-61, 2013. 4
    • (2013) Neurocomputing , vol.110 , pp. 51-61
    • Nguyen, D.T.1    Li, W.2    Ogunbona, P.3
  • 31
    • 84973876719 scopus 로고    scopus 로고
    • Human detection from images and videos: A survey
    • In press. 1
    • D. T. Nguyen, W. Li, and P. Ogunbona. Human detection from images and videos: A survey. Pattern Recognition, 2015. In press. 1
    • (2015) Pattern Recognition
    • Nguyen, D.T.1    Li, W.2    Ogunbona, P.3
  • 32
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • 4
    • J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3):61-74, 1999. 4
    • (1999) Advances in Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • Platt, J.1
  • 33
    • 33845576654 scopus 로고    scopus 로고
    • Multi-aspect detection of articulated objects
    • 1, 2
    • E. Seemann, B. Leibe, and B. Schiele. Multi-aspect detection of articulated objects. In CVPR, pages 1582-1588, 2006. 1, 2
    • (2006) CVPR , pp. 1582-1588
    • Seemann, E.1    Leibe, B.2    Schiele, B.3
  • 34
    • 17444367737 scopus 로고    scopus 로고
    • Detecting pedestrians using patterns of motion and appearance
    • 1
    • P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. IJCV, 63(2):153-161, 2005. 1
    • (2005) IJCV , vol.63 , Issue.2 , pp. 153-161
    • Viola, P.1    Jones, M.J.2    Snow, D.3
  • 35
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • 4
    • M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008. 4
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 36
    • 33645152426 scopus 로고    scopus 로고
    • A field model for human detection and tracking
    • 4
    • Y. Wu and T. Yu. A field model for human detection and tracking. PAMI, 28(5):753-765, 2006. 4
    • (2006) PAMI , vol.28 , Issue.5 , pp. 753-765
    • Wu, Y.1    Yu, T.2
  • 37
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures-of-parts
    • 1, 7, 8
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures-of-parts. PAMI, 35(12):2878-2890, 2013. 1, 7, 8
    • (2013) PAMI , vol.35 , Issue.12 , pp. 2878-2890
    • Yang, Y.1    Ramanan, D.2
  • 38
    • 84973867260 scopus 로고    scopus 로고
    • Human detection using learned part alphabet and pose dictionary
    • 1, 2, 7
    • C. Yao, X. Bai, W. Liu, and L. J. Latecki. Human detection using learned part alphabet and pose dictionary. In ECCV, 2014. 1, 2, 7
    • (2014) ECCV
    • Yao, C.1    Bai, X.2    Liu, W.3    Latecki, L.J.4
  • 40
    • 80052880984 scopus 로고    scopus 로고
    • Boosted local structured HOG-IBP for object localization
    • 1, 7
    • J. Zhang, K. Huang, Y. Yu, and T. Tan. Boosted local structured hog-lbp for object localization. In CVPR, pages 1393-1400, 2011. 1, 7
    • (2011) CVPR , pp. 1393-1400
    • Zhang, J.1    Huang, K.2    Yu, Y.3    Tan, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.