-
1
-
-
34547995321
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004. 3
-
(2004)
ICML
, pp. 3
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
2
-
-
43049174575
-
Surf: Speeded up robust features
-
6
-
H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. CVIU, 110:346-359, 2008. 6
-
(2008)
CVIU
, vol.110
, pp. 346-359
-
-
Bay, H.1
Ess, A.2
Tuytelaars, T.3
Gool, L.V.4
-
3
-
-
36849053972
-
Discriminative learning for differing training and test distributions
-
S. Bickel, M. Brckner, and T. Scheffer. Discriminative learning for differing training and test distributions. In ICML, 2007. 1
-
(2007)
ICML
, pp. 1
-
-
Bickel, S.1
Brckner, M.2
Scheffer, T.3
-
4
-
-
36849014901
-
Representing shape with a spatial pyramid kernel
-
A. Bosch, A. Zisserman, and Munoz. Representing shape with a spatial pyramid kernel. In CIVR, pages 40 1-408, 2007. 6
-
(2007)
CIVR
, vol.6
, pp. 401-408
-
-
Bosch, A.1
Zisserman, A.2
Munoz3
-
6
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
3
-
K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR. 2:265-292, 2002. 3
-
(2002)
JMLR
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
7
-
-
71149083696
-
Eigentransfer: A unified framework for transfer learning
-
W. Dai, O. Jin, G.-R. Xue, Q. Yang, and Y. Yu. Eigentransfer: A unified framework for transfer learning. In ICML, 2009. 1
-
(2009)
ICML
, pp. 1
-
-
Dai, W.1
Jin, O.2
Xue, G.-R.3
Yang, Q.4
Yu, Y.5
-
8
-
-
84860513476
-
Frustratingly easy domain adaptation
-
H. Daume III. Frustratingly easy domain adaptation. InACL, 2007. 1
-
(2007)
InACL
, vol.1
-
-
Daume III, H.1
-
9
-
-
78149302207
-
What does classifying more than 10,000 image categories tell us?
-
1
-
J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV, pages 71-84, 2010. 1
-
(2010)
ECCV
, pp. 71-84
-
-
Deng, J.1
Berg, A.C.2
Li, K.3
Fei-Fei, L.4
-
10
-
-
70450185098
-
Domain transfer svm for video concept detection
-
L. Duan, I. Tsang, D. Xu, and S. Maybank. Domain transfer svm for video concept detection. In CVPR, 2009. 1
-
(2009)
CVPR
, vol.1
-
-
Duan, L.1
Tsang, I.2
Xu, D.3
Maybank, S.4
-
11
-
-
56049109363
-
Modeling transfer relationships between learning tasks for improved inductive transfer
-
E. Eaton, M. desJardins, and T. Lane. Modeling transfer relationships between learning tasks for improved inductive transfer. In ECML, 2008. 1
-
(2008)
ECML
, vol.1
-
-
Eaton, E.1
DesJardins, M.2
Lane, T.3
-
12
-
-
70450207704
-
Describing objects by their attributes
-
A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In CVPR, 2009. 1, 4
-
(2009)
CVPR
, vol.1
, pp. 4
-
-
Farhadi, A.1
Endres, I.2
Hoiem, D.3
Forsyth, D.4
-
13
-
-
33144466753
-
One-shot learning of object categories
-
1
-
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. PAM1, 28:594-611, 2006. 1
-
(2006)
PAMI
, vol.28
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
14
-
-
85067032737
-
On feature combination for multiclass object classification
-
P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009. 5, 6
-
(2009)
ICCV
, vol.5
, pp. 6
-
-
Gehler, P.1
Nowozin, S.2
-
15
-
-
34948904828
-
Caltech 256 object category dataset
-
California Institue of Technology
-
G. Griffin, A. Holub, and P. Perona. Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366, California Institue of Technology, 2007. 1, 5, 6
-
(2007)
Technical Report UCB/CSD-04-1366
, vol.1
, Issue.5
, pp. 6
-
-
Griffin, G.1
Holub, A.2
Perona, P.3
-
16
-
-
84858738634
-
Efficient and accurate lp-norm multiple kernel learning
-
M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Muller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In NIPS. 2009. 3
-
(2009)
NIPS.
, vol.3
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Muller, K.-R.5
Zien, A.6
-
17
-
-
70450172710
-
Learning to detect unseen object classes by between-class attribute transfer
-
C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009. 1, 4, 6
-
(2009)
CVPR
, vol.1
, Issue.4
, pp. 6
-
-
Lampert, C.H.1
Nickisch, H.2
Harmeling, S.3
-
18
-
-
85162513516
-
Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification
-
L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification. In NIPS, 2010. 4
-
(2010)
NIPS
, vol.4
-
-
Li, L.-J.1
Su, H.2
Xing, E.P.3
Fei-Fei, L.4
-
19
-
-
0033284915
-
Object recognition from local scale-invariant features
-
D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999. 6
-
(1999)
ICCV
, vol.6
-
-
Lowe, D.G.1
-
20
-
-
0036647193
-
Multiresolution grayscale and rotation invariant texture classification with local binary patterns
-
6
-
T. Ojala, M. Pietikinen, and T. Menp. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. PAM1, 24:971-987, 2002. 6
-
(2002)
PAMI
, vol.24
, pp. 971-987
-
-
Ojala, T.1
Pietikinen, M.2
Menp, T.3
-
21
-
-
77955993905
-
Online-batch strongly convex multi kernel learning
-
F. Orabona, L. .lie, and B. Caputo. Online-batch strongly convex multi kernel learning. In CVPR, 2010. 1, 3, 4
-
(2010)
CVPR
, vol.1
, Issue.3
, pp. 4
-
-
Orabona, F.1
Jie, L.2
Caputo, B.3
-
22
-
-
38949193299
-
Why is real-world visual object recognition hard?
-
N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is Real-World Visual Object Recognition Hard? PLoS Comput BioI, 4( 1), 2008. 6
-
(2008)
PLoS Comput BioI
, vol.4
, Issue.1
, pp. 6
-
-
Pinto, N.1
Cox, D.D.2
DiCarlo, J.J.3
-
23
-
-
51949094374
-
Transfer learning for image classification with sparse prototype representations
-
A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image classification with sparse prototype representations. In CVPR, 2008. 1
-
(2008)
CVPR
, vol.1
-
-
Quattoni, A.1
Collins, M.2
Darrell, T.3
-
24
-
-
51949106645
-
Self-taught learning: Transfer learning from unlabeled data
-
1
-
R. Raina, A. Battle, H. Lee, and B. P. A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007. 1
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Ng, B.P.A.Y.4
-
25
-
-
78349281072
-
What helps where? and why? semantic relatedness for knowledge transfer
-
I
-
M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where? and why? semantic relatedness for knowledge transfer. In CVPR, 20 10. I
-
CVPR
, vol.20
, Issue.10
-
-
Rohrbach, M.1
Stark, M.2
Szarvas, G.3
Gurevych, I.4
Schiele, B.5
-
28
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
6
-
R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine L earning, 37:297-336, 1999. 6
-
(1999)
Machine L earning
, vol.37
, pp. 297-336
-
-
Schapire, R.1
Singer, Y.2
-
29
-
-
77953222843
-
A shape-based object class model for knowledge transfer
-
M. Stark, M. Goesele, and B. Schiele. A shape-based object class model for knowledge transfer. In ICCV, 2009. 1
-
(2009)
ICCV
, vol.1
-
-
Stark, M.1
Goesele, M.2
Schiele, B.3
-
30
-
-
77956008920
-
Optimizing one-shot recognition with micro-set learning
-
1
-
K. Tang, M. Tappen, R. Sukthankar, and C. Lampert. Optimizing one-shot recognition with micro-set learning. In CVPR, 2010. 1
-
(2010)
CVPR
-
-
Tang, K.1
Tappen, M.2
Sukthankar, R.3
Lampert, C.4
-
31
-
-
77956005674
-
Safety in numbers: Learning categories from few examples with multi model knowledge transfer
-
T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning categories from few examples with multi model knowledge transfer. In CVPR, 20 10. 1, 4, 5
-
(2010)
CVPR
, vol.1
, Issue.4
, pp. 5
-
-
Tommasi, T.1
Orabona, F.2
Caputo, B.3
-
32
-
-
78149355981
-
Efficient object category recognition using classemes
-
5
-
L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, pages 776-789, 20 10. 4, 5
-
(2010)
ECCV
, vol.4
, pp. 776-789
-
-
Torresani, L.1
Szummer, M.2
Fitzgibbon, A.3
-
33
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
3
-
I. Tsochantaridis, T. Hofmarrn, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004. 2, 3
-
(2004)
ICML
, vol.2
-
-
Tsochantaridis, I.1
Hofmarrn, T.2
Joachims, T.3
Altun, Y.4
-
34
-
-
34948876368
-
Human detection via classification on riemannian manifolds
-
O. Tuzel, F. Porikli, and P. Meer. Human detection via classification on riemannian manifolds. In CVPR, 2007. 6
-
(2007)
CVPR
, vol.6
-
-
Tuzel, O.1
Porikli, F.2
Meer, P.3
-
35
-
-
84856648103
-
Semantic modeling of natural scenes for content-based image retrieval
-
J. Vogel and B. Schiele. Semantic modeling of natural scenes for content-based image retrieval. LJCV, 2008. 4
-
(2008)
LJCV
, vol.4
-
-
Vogel, J.1
Schiele, B.2
-
36
-
-
77955998024
-
Boosting for transfer learning with multiple sources
-
Y. Yao and G. Doretto. Boosting for transfer learning with multiple sources. In CVPR, 20 10. 1
-
(2010)
CVPR
, vol.1
-
-
Yao, Y.1
Doretto, G.2
-
37
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
3
-
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. Roy. Stat. Society, 68:49-67, 2006. 3
-
(2006)
J. Roy. Stat. Society
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
|