메뉴 건너뛰기




Volumn , Issue , 2011, Pages 463-470

Comparing state-of-the-art visual features on invariant object recognition tasks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL APPROACH; FUNDAMENTAL PROBLEM; IMAGE VARIATIONS; INVARIANT OBJECT RECOGNITION; INVARIANT RECOGNITION; NATURAL IMAGE DATABASE; NATURAL IMAGES; PERFORMANCE GAIN; RECOGNITION SYSTEMS; VISUAL FEATURE; VISUAL OBJECT RECOGNITION; VISUAL REPRESENTATIONS;

EID: 79952518221     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2011.5711540     Document Type: Conference Paper
Times cited : (51)

References (37)
  • 1
    • 0035686784 scopus 로고    scopus 로고
    • Geometric blur and template matching
    • A. C. Berg and J. Malik. Geometric blur and template matching. CVPR, 2001.
    • (2001) CVPR
    • Berg, A.C.1    Malik, J.2
  • 2
    • 36849014901 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel. CIVR, 2007.
    • (2007) CIVR
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 4
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 5
    • 34447552444 scopus 로고    scopus 로고
    • Untangling invariant object recognition
    • J. J. DiCarlo and D. D. Cox. Untangling invariant object recognition. TICS, 2007.
    • (2007) TICS
    • DiCarlo, J.J.1    Cox, D.D.2
  • 8
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. CVPR, 2004.
    • (2004) CVPR
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 9
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multistage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multistage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 10
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In CVPR, 2009.
    • (2009) CVPR
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    LeCun, Y.4
  • 11
    • 33744923546 scopus 로고    scopus 로고
    • Biologically motivated perceptual feature: Generalized robust invariant feature
    • S. Kim and I. Kweon. Biologically motivated perceptual feature: Generalized robust invariant feature. ACCV, 2006.
    • (2006) ACCV
    • Kim, S.1    Kweon, I.2
  • 13
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, 2004.
    • (2004) CVPR
    • LeCun, Y.1    Huang, F.2    Bottou, L.3
  • 15
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 16
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 2004.
    • (2004) PAMI
    • Martin, D.1    Fowlkes, C.2    Malik, J.3
  • 18
    • 27644547620 scopus 로고    scopus 로고
    • A performance evaluation of local descriptors
    • K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. PAMI, 2005.
    • (2005) PAMI
    • Mikolajczyk, K.1    Schmid, C.2
  • 19
    • 33846859146 scopus 로고    scopus 로고
    • Evaluation of features detectors and descriptors based on 3D objects
    • P. Moreels and P. Perona. Evaluation of features detectors and descriptors based on 3D objects. ICCV, 2007.
    • (2007) ICCV
    • Moreels, P.1    Perona, P.2
  • 20
    • 0029220876 scopus 로고
    • Visual learning and recognition of 3-D objects from appearance
    • H. Murase and S. Nayar. Visual learning and recognition of 3-D objects from appearance. IJCV, 1995.
    • (1995) IJCV
    • Murase, H.1    Nayar, S.2
  • 21
    • 51149092609 scopus 로고    scopus 로고
    • Object class recognition and localization using sparse features with limited receptive fields
    • J. Mutch and D. G. Lowe. Object class recognition and localization using sparse features with limited receptive fields. IJCV, 2008.
    • (2008) IJCV
    • Mutch, J.1    Lowe, D.G.2
  • 22
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • Peter V. Gehler and Sebastian Nowozin. On Feature Combination for Multiclass Object Classification. In ICCV, 2009.
    • (2009) ICCV
    • Gehler, P.V.1    Nowozin, S.2
  • 24
    • 79952501854 scopus 로고    scopus 로고
    • Establishing good benchmarks and baselines for face recognition
    • N. Pinto, J. J. DiCarlo, and D. D. Cox. Establishing Good Benchmarks and Baselines for Face Recognition. ECCV, 2008.
    • (2008) ECCV
    • Pinto, N.1    DiCarlo, J.J.2    Cox, D.D.3
  • 25
    • 70450172604 scopus 로고    scopus 로고
    • How far can you get with a modern face recognition test set using only simple features?
    • N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you get with a modern face recognition test set using only simple features? CVPR, 2009.
    • (2009) CVPR
    • Pinto, N.1    DiCarlo, J.J.2    Cox, D.D.3
  • 26
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comp Bio, 2009.
    • (2009) PLoS Comp Bio
    • Pinto, N.1    Doukhan, D.2    DiCarlo, J.J.3    Cox, D.D.4
  • 28
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nat. Neurosci., 1999.
    • (1999) Nat. Neurosci.
    • Riesenhuber, M.1    Poggio, T.2
  • 29
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • B. Russell, A. Torralba, K. Murphy, and W. Freeman. LabelMe: a database and web-based tool for image annotation. IJCV, 2008.
    • (2008) IJCV
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.4
  • 30
    • 34247096930 scopus 로고    scopus 로고
    • A feedforward architecture accounts for rapid categorization
    • T. Serre, A. Oliva, and T. Poggio. A feedforward architecture accounts for rapid categorization. PNAS, 2007.
    • (2007) PNAS
    • Serre, T.1    Oliva, A.2    Poggio, T.3
  • 32
    • 45049088224 scopus 로고    scopus 로고
    • Evaluation of face datasets as tools for assessing the performance of face recognition methods
    • L. Shamir. Evaluation of Face Datasets as Tools for Assessing the Performance of Face Recognition Methods. IJCV, 2008.
    • (2008) IJCV
    • Shamir, L.1
  • 34
    • 77955426203 scopus 로고    scopus 로고
    • Evaluating color descriptors for object and scene recognition
    • K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. Evaluating color descriptors for object and scene recognition. PAMI, 2010.
    • (2010) PAMI
    • Van De Sande, K.E.A.1    Gevers, T.2    Snoek, C.G.M.3
  • 35
    • 50649115912 scopus 로고    scopus 로고
    • Learning the discriminative power-invariance TradeOff
    • M. Varma and D. Ray. Learning The Discriminative Power-Invariance TradeOff. ICCV, 2007.
    • (2007) ICCV
    • Varma, M.1    Ray, D.2
  • 36
    • 33845566162 scopus 로고    scopus 로고
    • SVM-KNN: Discriminative nearest neighbor classification for visual category recognition
    • H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In CVPR, 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.2    Maire, M.3    Malik, J.4
  • 37
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. IJCV, 2007.
    • (2007) IJCV
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.