메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1868-1876

Depth-based hand pose estimation: Data, methods, and challenges

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 84973904871     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.217     Document Type: Conference Paper
Times cited : (181)

References (43)
  • 2
    • 84861950048 scopus 로고    scopus 로고
    • Efficient spatio-temporal hole filling strategy for Kinect depth maps
    • M. Camplani and L. Salgado. Efficient spatio-temporal hole filling strategy for Kinect depth maps. In SPIE, 2012.
    • (2012) SPIE
    • Camplani, M.1    Salgado, L.2
  • 4
    • 84898774089 scopus 로고    scopus 로고
    • Real-time articulated hand pose estimation using semi-supervised transductive regression forests
    • T. Y. D. Tang and T.-K. Kim. Real-time articulated hand pose estimation using semi-supervised transductive regression forests. In ICCV, 2013.
    • (2013) ICCV
    • Tang, T.Y.D.1    Kim, T.-K.2
  • 5
    • 0035269866 scopus 로고    scopus 로고
    • 3D articulated models and multiview tracking with physical forces
    • Q. Delamarre and O. Faugeras. 3D Articulated Models and Multiview Tracking with Physical Forces. CVIU, 2001.
    • (2001) CVIU
    • Delamarre, Q.1    Faugeras, O.2
  • 9
  • 10
    • 84873413988 scopus 로고    scopus 로고
    • A metric for comparing the anthropomorphic motion capability of artificial hands
    • T. Feix, J. Romero, C. H. Ek, H. Schmiedmayer, and D. Kragic. A Metric for Comparing the Anthropomorphic Motion Capability of Artificial Hands. IEEE Robotics, 2013.
    • (2013) IEEE Robotics
    • Feix, T.1    Romero, J.2    Ek, C.H.3    Schmiedmayer, H.4    Kragic, D.5
  • 11
    • 84922645579 scopus 로고    scopus 로고
    • Learning rich features from RGB-D images for object detection and segmentation
    • Springer
    • S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features from RGB-D images for object detection and segmentation. In ECCV. Springer, 2014.
    • (2014) ECCV
    • Gupta, S.1    Girshick, R.2    Arbelaez, P.3    Malik, J.4
  • 14
    • 84881506083 scopus 로고    scopus 로고
    • Hand pose estimation and hand shape classification using multi-layered randomized decision forests
    • C. Keskin, F. K?rac, Y. E. Kara, and L. Akarun. Hand pose estimation and hand shape classification using multi-layered randomized decision forests. In ECCV 2012. 2012.
    • (2012) ECCV 2012
    • Keskin, C.1    Krac, F.2    Kara, Y.E.3    Akarun, L.4
  • 15
    • 84887400234 scopus 로고    scopus 로고
    • Pixel-level hand detection in egocentric videos
    • June
    • C. Li and K. M. Kitani. Pixel-Level Hand Detection in Egocentric Videos. CVPR, June 2013.
    • (2013) CVPR
    • Li, C.1    Kitani, K.M.2
  • 16
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. TPAMI, 26(5), 2004.
    • (2004) TPAMI , vol.26 , Issue.5
    • Martin, D.R.1    Fowlkes, C.C.2    Malik, J.3
  • 18
    • 84906339516 scopus 로고    scopus 로고
    • Scalable nearest neighbor algorithms for high dimensional data
    • Nov.
    • M. Muja and D. G. Lowe. Scalable Nearest Neighbor Algorithms for High Dimensional Data. TPAMI, 36(11), Nov. 2014.
    • (2014) TPAMI , vol.36 , Issue.11
    • Muja, M.1    Lowe, D.G.2
  • 19
    • 84964020300 scopus 로고    scopus 로고
    • Hands deep in deep learning for hand pose estimation
    • M. Oberweger, P. Wohlhart, and V. Lepetit. Hands Deep in Deep Learning for Hand Pose Estimation. CVWW, 2015.
    • (2015) CVWW
    • Oberweger, M.1    Wohlhart, P.2    Lepetit, V.3
  • 20
    • 84908519903 scopus 로고    scopus 로고
    • Hand gesture recognition in real time for automotive interfaces: A multimodal vision-based approach and evaluations
    • E. Ohn-Bar and M. M. Trivedi. Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations. IEEE TITS, 2014.
    • (2014) IEEE TITS
    • Ohn-Bar, E.1    Trivedi, M.M.2
  • 21
    • 84898466334 scopus 로고    scopus 로고
    • Efficient model-based 3D tracking of hand articulations using kinect
    • I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient model-based 3D tracking of hand articulations using kinect. In BMVC, 2011.
    • (2011) BMVC
    • Oikonomidis, I.1    Kyriazis, N.2    Argyros, A.3
  • 22
    • 84898798671 scopus 로고    scopus 로고
    • Finding the best from the second bests-inhibiting subjective bias in evaluation of visual tracking algorithms
    • Dec.
    • Y. Pang and H. Ling. Finding the Best from the Second Bests-Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms. ICCV, Dec. 2013.
    • (2013) ICCV
    • Pang, Y.1    Ling, H.2
  • 24
    • 84973911590 scopus 로고    scopus 로고
    • PrimeSense Version 2. 2
    • PrimeSense. Nite2 middleware, 2013. Version 2. 2.
    • (2013) Nite2 Middleware
  • 25
    • 84911395980 scopus 로고    scopus 로고
    • Realtime and robust hand tracking from depth
    • C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and robust hand tracking from depth. CVPR 2014.
    • (2014) CVPR
    • Qian, C.1    Sun, X.2    Wei, Y.3    Tang, X.4    Sun, J.5
  • 28
    • 84973915675 scopus 로고    scopus 로고
    • Detecting avocados to zucchinis: What have we done, and where are we going?
    • O. Russakovsky, J. Deng, Z. Huang, A. C. Berg, and L. Fei-Fei. Detecting avocados to zucchinis: what have we done, and where are we going? In ICCV. IEEE, 2013.
    • (2013) ICCV. IEEE
    • Russakovsky, O.1    Deng, J.2    Huang, Z.3    Berg, A.C.4    Fei-Fei, L.5
  • 29
    • 77957902892 scopus 로고    scopus 로고
    • A taxonomy and evaluation of dense two-frame stereo
    • D. Scharstein. A Taxonomy and Evaluation of Dense Two-Frame Stereo. IJCV, 47(1), 2002.
    • (2002) IJCV , vol.47 , Issue.1
    • Scharstein, D.1
  • 30
    • 0345414554 scopus 로고    scopus 로고
    • Fast pose estimation with parameter-sensitive hashing
    • G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive hashing. In ICCV, 2003.
    • (2003) ICCV
    • Shakhnarovich, G.1    Viola, P.2    Darrell, T.3
  • 32
    • 84937466025 scopus 로고    scopus 로고
    • Sliding shapes for 3d object detection in depth images
    • S. Song and J. Xiao. Sliding Shapes for 3D Object Detection in Depth Images. ECCV, 2014.
    • (2014) ECCV
    • Song, S.1    Xiao, J.2
  • 33
    • 84898799681 scopus 로고    scopus 로고
    • Interactive markerless articulated hand motion tracking using rgb and depth data
    • S. Sridhar, A. Oulasvirta, and C. Theobalt. Interactive Markerless Articulated Hand Motion Tracking Using RGB and Depth Data. ICCV, 2013.
    • (2013) ICCV
    • Sridhar, S.1    Oulasvirta, A.2    Theobalt, C.3
  • 34
    • 33746580718 scopus 로고    scopus 로고
    • Model-based hand tracking using a hierarchical Bayesian filter
    • Sept.
    • B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. Model-based hand tracking using a hierarchical Bayesian filter. IEEE TPAMI, 28(9), Sept. 2006.
    • (2006) IEEE TPAMI , vol.28 , Issue.9
    • Stenger, B.1    Thayananthan, A.2    Torr, P.H.S.3    Cipolla, R.4
  • 35
    • 21644485950 scopus 로고    scopus 로고
    • Sign language structure: An outline of the visual communication systems of the American deaf
    • W. C. Stokoe. Sign language structure: An outline of the visual communication systems of the american deaf. Journal of deaf studies and deaf education, 10(1), 2005.
    • (2005) Journal of Deaf Studies and Deaf Education , vol.10 , Issue.1
    • Stokoe, W.C.1
  • 36
    • 84911393251 scopus 로고    scopus 로고
    • Latent regression forest: Structured estimation of 3D articulated hand posture
    • D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. Latent regression forest: Structured estimation of 3D articulated hand posture. CVPR, 2014.
    • (2014) CVPR
    • Tang, D.1    Chang, H.J.2    Tejani, A.3    Kim, T.-K.4
  • 38
    • 84907552337 scopus 로고    scopus 로고
    • Real-time continuous pose recovery of human hands using convolutional networks
    • 33, August
    • J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-time continuous pose recovery of human hands using convolutional networks. ACM T. Graphics, 33, August 2014.
    • (2014) ACM T. Graphics
    • Tompson, J.1    Stein, M.2    LeCun, Y.3    Perlin, K.4
  • 39
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • IEEE
    • A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, pages 1521-1528. IEEE, 2011.
    • (2011) CVPR , pp. 1521-1528
    • Torralba, A.1    Efros, A.A.2
  • 40
    • 10444227648 scopus 로고    scopus 로고
    • A survey on pixel-based skin color detection techniques
    • Moscow, Russia
    • V. Vezhnevets, V. Sazonov, and A. Andreeva. A survey on pixel-based skin color detection techniques. In Proc. Graphicon, volume 3. Moscow, Russia, 2003.
    • (2003) Proc. Graphicon , vol.3
    • Vezhnevets, V.1    Sazonov, V.2    Andreeva, A.3
  • 42
    • 84898784928 scopus 로고    scopus 로고
    • Efficient hand pose estimation from a single depth image
    • Dec.
    • C. Xu and L. Cheng. Efficient Hand Pose Estimation from a Single Depth Image. ICCV, Dec. 2013.
    • (2013) ICCV
    • Xu, C.1    Cheng, L.2
  • 43
    • 84898436991 scopus 로고    scopus 로고
    • Do we need more training data or better models for object detection?
    • X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we need more training data or better models for object detection?. In BMVC, 2012.
    • (2012) BMVC
    • Zhu, X.1    Vondrick, C.2    Ramanan, D.3    Fowlkes, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.