-
1
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
2
-
-
84883202426
-
Reversible anionic redox chemistry in high-capacity layeredoxide electrodes
-
Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layeredoxide electrodes. Nat. Mater. 12, 827-835 (2013).
-
(2013)
Nat. Mater.
, vol.12
, pp. 827-835
-
-
Sathiya, M.1
-
3
-
-
84896344866
-
2 for lithium-ion batteries
-
2 for lithium-ion batteries. Nano Lett. 14, 1281-1287 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 1281-1287
-
-
Wu, F.1
-
4
-
-
81255173332
-
Novel solid-state Li/LiFePO4 battery configuration with a ternary nanocomposite electrolyte for practical applications
-
Wu, F. et al. Novel solid-state Li/LiFePO4 battery configuration with a ternary nanocomposite electrolyte for practical applications. Adv. Mater. 23, 5081-5085 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 5081-5085
-
-
Wu, F.1
-
5
-
-
80054824131
-
Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries
-
Guo, B. et al. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 23, 4661-4666 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 4661-4666
-
-
Guo, B.1
-
6
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366-377 (2005).
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.-M.4
Van Schalkwijk, W.5
-
7
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930-2946 (2008).
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.-M.3
-
8
-
-
72649087990
-
Research on advanced materials for Li-ion batteries
-
Li, H., Wang, Z., Chen, L. & Huang, X. Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593-4607 (2009).
-
(2009)
Adv. Mater.
, vol.21
, pp. 4593-4607
-
-
Li, H.1
Wang, Z.2
Chen, L.3
Huang, X.4
-
9
-
-
79954525029
-
Functional materials for rechargeable batteries
-
Cheng, F., Liang, J., Tao, Z. & Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 23, 1695-1715 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 1695-1715
-
-
Cheng, F.1
Liang, J.2
Tao, Z.3
Chen, J.4
-
10
-
-
79958028636
-
Prospective materials and applications for Li secondary batteries
-
Jeong, G., Kim, Y.-U., Kim, H., Kim, Y.-J. & Sohn, H.-J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 4, 1986-2002 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1986-2002
-
-
Jeong, G.1
Kim, Y.-U.2
Kim, H.3
Kim, Y.-J.4
Sohn, H.-J.5
-
11
-
-
84867361554
-
Titanium-based anode materials for safe lithium-ion batteries
-
Chen, Z., Belharouak, I., Sun, Y.-K. & Amine, K. Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 23, 959-969 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 959-969
-
-
Chen, Z.1
Belharouak, I.2
Sun, Y.-K.3
Amine, K.4
-
12
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for Li ion batteries
-
Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364-5457 (2013).
-
(2013)
Chem. Rev.
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.R.3
-
13
-
-
84893453577
-
Mixed transition-metal oxides: Design, synthesis, and energy-related applications
-
Yuan, C., Wu, H. B., Xie, Y. & Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488-1504 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 1488-1504
-
-
Yuan, C.1
Wu, H.B.2
Xie, Y.3
Lou, X.W.4
-
14
-
-
66549087760
-
Reversible and high-capacity nanostructured electrode materials for Li-ion batteries
-
Kim, M. G. & Cho, J. Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 19, 1497-1514 (2009).
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 1497-1514
-
-
Kim, M.G.1
Cho, J.2
-
15
-
-
77956958084
-
Beyond intercalationbased Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions
-
Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalationbased Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170-E192 (2010).
-
(2010)
Adv. Mater.
, vol.22
, pp. E170-E192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacín, M.R.4
-
16
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496-499 (2000).
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.-M.5
-
17
-
-
79751530271
-
Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries
-
Lee, K. T. & Cho, J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6, 28-41 (2011).
-
(2011)
Nano Today
, vol.6
, pp. 28-41
-
-
Lee, K.T.1
Cho, J.2
-
18
-
-
84859304135
-
Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries
-
Wu, H. B., Chen, J. S., Hng, H. H. & Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526-2542 (2012).
-
(2012)
Nanoscale
, vol.4
, pp. 2526-2542
-
-
Wu, H.B.1
Chen, J.S.2
Hng, H.H.3
Lou, X.W.4
-
19
-
-
33646577838
-
Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
-
Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885-888 (2006).
-
(2006)
Science
, vol.312
, pp. 885-888
-
-
Nam, K.T.1
-
20
-
-
67649240275
-
Combination of lightweight elements and nanostructured materials for batteries
-
Chen, J. & Cheng, F. Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42, 713-723 (2009).
-
(2009)
Acc. Chem. Res.
, vol.42
, pp. 713-723
-
-
Chen, J.1
Cheng, F.2
-
21
-
-
79961005781
-
Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
-
Ji, L., Lin, Z., Alcoutlabi, M. & Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682-2699 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2682-2699
-
-
Ji, L.1
Lin, Z.2
Alcoutlabi, M.3
Zhang, X.4
-
22
-
-
84859560154
-
Metal oxide hollow nanostructures for lithium-ion batteries
-
Wang, Z., Zhou, L. & Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903-1911 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 1903-1911
-
-
Wang, Z.1
Zhou, L.2
Lou, X.W.3
-
23
-
-
34547662943
-
Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly
-
Li, J., Tang, S., Lu, L. & Zeng, H. C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 129, 9401-9409 (2007).
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 9401-9409
-
-
Li, J.1
Tang, S.2
Lu, L.3
Zeng, H.C.4
-
24
-
-
77955312690
-
2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes
-
2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 10, 2727-2733 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 2727-2733
-
-
Hou, Y.1
Cheng, Y.W.2
Hobson, T.3
Liu, J.4
-
25
-
-
77950152488
-
Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage
-
Wang, D. et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587-1595 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 1587-1595
-
-
Wang, D.1
-
26
-
-
84864991204
-
Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes
-
Ko, S., Lee, J., Yang, H. S., Park, S. & Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 24, 4451-4456 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 4451-4456
-
-
Ko, S.1
Lee, J.2
Yang, H.S.3
Park, S.4
Jeong, U.5
-
27
-
-
84887004246
-
CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications
-
Zhang, Q. et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208-337 (2014).
-
(2014)
Prog. Mater. Sci.
, vol.60
, pp. 208-337
-
-
Zhang, Q.1
-
28
-
-
84908108409
-
Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries
-
Wang, C. et al. Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries. Nano Energy 9, 334-344 (2014).
-
(2014)
Nano Energy
, vol.9
, pp. 334-344
-
-
Wang, C.1
-
29
-
-
84892933795
-
Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries
-
Wang, C. et al. Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 1243-1250 (2014).
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 1243-1250
-
-
Wang, C.1
-
30
-
-
33745713659
-
High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
-
Tabernal, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567-573 (2006).
-
(2006)
Nat. Mater.
, vol.5
, pp. 567-573
-
-
Tabernal, P.L.1
Mitra, S.2
Poizot, P.3
Simon, P.4
Tarascon, J.-M.5
-
31
-
-
78651521297
-
Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes
-
Jiang, J., Li, Y., Liu, J. & Huang, X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 3, 45-58 (2011).
-
(2011)
Nanoscale
, vol.3
, pp. 45-58
-
-
Jiang, J.1
Li, Y.2
Liu, J.3
Huang, X.4
-
32
-
-
0346742503
-
CuO nanowires can be synthesized by heating copper substrates in air
-
Jiang, X., Herricks, T. & Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333-1338 (2002).
-
(2002)
Nano Lett.
, vol.2
, pp. 1333-1338
-
-
Jiang, X.1
Herricks, T.2
Xia, Y.3
-
33
-
-
3042734818
-
Mesoscale organization of CuO nanoribbons: Formation of 'dandelions'
-
Liu, B. & Zeng, H. C. Mesoscale organization of CuO nanoribbons: formation of 'dandelions'. J. Am. Chem. Soc. 126, 8124-8125 (2004).
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 8124-8125
-
-
Liu, B.1
Zeng, H.C.2
-
34
-
-
83755228560
-
Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals
-
Bao, H. et al. Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals. Angew. Chem. Int. Ed. 50, 12294-12298 (2011).
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 12294-12298
-
-
Bao, H.1
-
35
-
-
77957872078
-
Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires
-
Hu, J., Li, D., Lu, J. G. & Wu, R. Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires. J. Phys. Chem. C 114, 17120-17126 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 17120-17126
-
-
Hu, J.1
Li, D.2
Lu, J.G.3
Wu, R.4
-
36
-
-
84863104031
-
Lithium storage in nitrogen-rich mesoporous carbon materials
-
Mao, Y. et al. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5, 7950-7955 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7950-7955
-
-
Mao, Y.1
-
37
-
-
84875864937
-
Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors
-
Li, Z. et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6, 871-878 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 871-878
-
-
Li, Z.1
-
38
-
-
84859713696
-
Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability
-
Qie, L. et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24, 2047-2050 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 2047-2050
-
-
Qie, L.1
-
39
-
-
79954616711
-
Nitrogen-doped graphene nanosheets with excellent lithium storage properties
-
Wang, H. et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21, 5430-5434 (2011).
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 5430-5434
-
-
Wang, H.1
-
40
-
-
29444437534
-
Nanoionics Ion transport and electrochemical storage in confined systems
-
Maier, J. Nanoionics Ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805-815 (2005).
-
(2005)
Nat. Mater.
, vol.4
, pp. 805-815
-
-
Maier, J.1
-
41
-
-
84862302894
-
Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries
-
Liu, B. et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005-3011 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 3005-3011
-
-
Liu, B.1
-
42
-
-
84887900439
-
A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery
-
Verrelli, R., Hassoun, J., Farkas, A., Jacobb, T. & Scrosati, B. A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery. J. Mater. Chem. A 1, 15329-15333 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 15329-15333
-
-
Verrelli, R.1
Hassoun, J.2
Farkas, A.3
Jacobb, T.4
Scrosati, B.5
-
43
-
-
85012195216
-
Ultralong durability of porous a-Fe2O3 nanofibers in practical Li-ion configuration with LiMn2O4 cathode
-
Jayaraman, S. et al. Ultralong durability of porous a-Fe2O3 nanofibers in practical Li-ion configuration with LiMn2O4 cathode. Adv. Sci. 2, 50-54 (2015).
-
(2015)
Adv. Sci.
, vol.2
, pp. 50-54
-
-
Jayaraman, S.1
-
44
-
-
84863886158
-
Geometrical effect of CuO nanostructures on catalytic benzene combustion
-
Fei, Z., Lu, P., Feng, X., Sun, B. & Ji, W. Geometrical effect of CuO nanostructures on catalytic benzene combustion. Catal. Sci. Technol. 2, 1705-1710 (2012).
-
(2012)
Catal. Sci. Technol.
, vol.2
, pp. 1705-1710
-
-
Fei, Z.1
Lu, P.2
Feng, X.3
Sun, B.4
Ji, W.5
-
45
-
-
79952643490
-
Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries
-
Zhao, L., Hu, Y.-S., Li, H., Wang, Z. & Chen, L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23, 1385-1388 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 1385-1388
-
-
Zhao, L.1
Hu, Y.-S.2
Li, H.3
Wang, Z.4
Chen, L.5
-
46
-
-
84906084540
-
2 nanowires surface coated with a uniform hollow shell by atomic layer deposition
-
2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 14, 4852-4858 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 4852-4858
-
-
Guan, C.1
-
47
-
-
84928960596
-
Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots
-
Zhu, C. et al. Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots. Adv. Mater. Interfaces 2, 499-504 (2015).
-
(2015)
Adv. Mater. Interfaces
, vol.2
, pp. 499-504
-
-
Zhu, C.1
-
48
-
-
84895920205
-
A pomegranate-inspired nanoscale design for large-volume-charge lithium battery anodes
-
Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-charge lithium battery anodes. Nat. Nanotechnol. 9, 187-192 (2014).
-
(2014)
Nat. Nanotechnol.
, vol.9
, pp. 187-192
-
-
Liu, N.1
|