-
1
-
-
67651183656
-
The mushroom body of adult drosophila characterized by GAL4 drivers
-
Aso Y, Grü bel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. 2009. The mushroom body of adult drosophila characterized by GAL4 drivers. Journal of Neurogenetics 23:156–172. doi: 10.1080/01677060802471718
-
(2009)
Journal of Neurogenetics
, vol.23
, pp. 156-172
-
-
Aso, Y.1
Grü Bel, K.2
Busch, S.3
Friedrich, A.B.4
Siwanowicz, I.5
Tanimoto, H.6
-
2
-
-
84864579267
-
Three dopamine pathways induce aversive odor memories with different stability
-
Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H. 2012. Three dopamine pathways induce aversive odor memories with different stability. PLoS Genetics 8:e1002768. doi: 10.1371/journal.pgen.1002768
-
(2012)
Plos Genetics
, vol.8
-
-
Aso, Y.1
Herb, A.2
Ogueta, M.3
Siwanowicz, I.4
Templier, T.5
Friedrich, A.B.6
Ito, K.7
Scholz, H.8
Tanimoto, H.9
-
3
-
-
84958042710
-
Mushroom body output neurons encode valence and guide memory-based action selection in drosophila
-
Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais P-Y, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo T-TB, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, et al. 2014a. Mushroom body output neurons encode valence and guide memory-based action selection in drosophila. eLife 3:1–42. doi: 10.7554/eLife.04580
-
(2014)
Elife
, vol.3
, pp. 1-42
-
-
Aso, Y.1
Sitaraman, D.2
Ichinose, T.3
Kaun, K.R.4
Vogt, K.5
Belliart-Guérin, G.6
Plaçais, P.-Y.7
Robie, A.A.8
Yamagata, N.9
Schnaitmann, C.10
Rowell, W.J.11
Johnston, R.M.12
Ngo, T.-T.13
Chen, N.14
Korff, W.15
Nitabach, M.N.16
Heberlein, U.17
Preat, T.18
Branson, K.M.19
Tanimoto, H.20
more..
-
4
-
-
84929216843
-
The neuronal architecture of the mushroom body provides a logic for associative learning
-
Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-TB, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM. 2014b. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3:1–47. doi: 10.7554/eLife.04577
-
(2014)
Elife
, vol.3
, pp. 1-47
-
-
Aso, Y.1
Hattori, D.2
Yu, Y.3
Johnston, R.M.4
Iyer, N.A.5
Ngo, T.-T.6
Dionne, H.7
Abbott, L.F.8
Axel, R.9
Tanimoto, H.10
Rubin, G.M.11
-
5
-
-
58149148376
-
Drosophila’s view on insect vision
-
Borst A. 2009. Drosophila’s view on insect vision. Current Biology 19:R36–47. doi: 10.1016/j.cub.2008.11.001
-
(2009)
Current Biology
, vol.19
, pp. R36-R47
-
-
Borst, A.1
-
6
-
-
84898808859
-
Dopaminergic modulation of camp drives nonlinear plasticity across the drosophila mushroom body lobes
-
Boto T, Louis T, Jindachomthong K, Jalink K, Tomchik SM. 2014. Dopaminergic modulation of camp drives nonlinear plasticity across the drosophila mushroom body lobes. Current Biology 24. doi: 10.1016/j.cub.2014.03.021
-
(2014)
Current Biology
, vol.24
-
-
Boto, T.1
Louis, T.2
Jindachomthong, K.3
Jalink, K.4
Tomchik, S.M.5
-
7
-
-
68849111099
-
Mushroom bodies regulate habit formation in drosophila
-
Brembs B. 2009. Mushroom bodies regulate habit formation in drosophila. Current Biology 19:1351–1355. doi: 10.1016/j.cub.2009.06.014
-
(2009)
Current Biology
, vol.19
, pp. 1351-1355
-
-
Brembs, B.1
-
8
-
-
84859703198
-
Different classes of input and output neurons reveal new features in microglomeruli of the adult drosophila mushroom body calyx
-
Butcher NJ, Friedrich AB, Lu Z, Tanimoto H, Meinertzhagen IA. 2012. Different classes of input and output neurons reveal new features in microglomeruli of the adult drosophila mushroom body calyx. The Journal of Comparative Neurology 520:2185–2201. doi: 10.1002/cne.23037
-
(2012)
The Journal of Comparative Neurology
, vol.520
, pp. 2185-2201
-
-
Butcher, N.J.1
Friedrich, A.B.2
Lu, Z.3
Tanimoto, H.4
Meinertzhagen, I.A.5
-
9
-
-
84950278355
-
Coordinated and compartmentalized neuromodulation shapes sensory processing in drosophila
-
Cohn R, Morantte I, Ruta V. 2015. Coordinated and compartmentalized neuromodulation shapes sensory processing in drosophila. Cell 163:1742–1755. doi: 10.1016/j.cell.2015.11.019
-
(2015)
Cell
, vol.163
, pp. 1742-1755
-
-
Cohn, R.1
Morantte, I.2
Ruta, V.3
-
10
-
-
0037200893
-
Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera)
-
Ehmer B, Gronenberg W. 2002. Segregation of visual input to the mushroom bodies in the honeybee (apis mellifera). The Journal of Comparative Neurology 451:362–373. doi: 10.1002/cne.10355
-
(2002)
The Journal of Comparative Neurology
, vol.451
, pp. 362-373
-
-
Ehmer, B.1
Gronenberg, W.2
-
11
-
-
84942848733
-
Evolution and function of the insect mushroom bodies: Contributions from comparative and model systems studies
-
Farris SM, Van Dyke JW. 2015. Evolution and function of the insect mushroom bodies: Contributions from comparative and model systems studies. Current Opinion in Insect Science 12:19–25. doi: 10.1016/j.cois.2015.08.006
-
(2015)
Current Opinion in Insect Science
, vol.12
, pp. 19-25
-
-
Farris, S.M.1
Van Dyke, J.W.2
-
12
-
-
54049111475
-
The neural substrate of spectral preference in drosophila
-
Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, Rister J, Thum AS, Yang M, Hong ST, Wang JW, Odenwald WF, White BH, Meinertzhagen IA, Lee CH. 2008. The neural substrate of spectral preference in drosophila. Neuron 60:328–342. doi: 10.1016/j.neuron.2008.08.010
-
(2008)
Neuron
, vol.60
, pp. 328-342
-
-
Gao, S.1
Takemura, S.Y.2
Ting, C.Y.3
Huang, S.4
Lu, Z.5
Luan, H.6
Rister, J.7
Thum, A.S.8
Yang, M.9
Hong, S.T.10
Wang, J.W.11
Odenwald, W.F.12
White, B.H.13
Meinertzhagen, I.A.14
Lee, C.H.15
-
13
-
-
0030927483
-
Honeybee vision: Analysis of orientation and colour in the lateral, dorsal and ventral fields of view
-
Giger A, Srinivasan M. 1997. Honeybee vision: Analysis of orientation and colour in the lateral, dorsal and ventral fields of view. The Journal of Experimental Biology 200:1271–1280.
-
(1997)
The Journal of Experimental Biology
, vol.200
, pp. 1271-1280
-
-
Giger, A.1
Srinivasan, M.2
-
14
-
-
84902665748
-
Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers
-
Groh C, Kelber C, Grü bel K, Rössler W. 2014. Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers. Proceedings. Biological Sciences/the Royal Society 281. doi: 10.1098/rspb.2014.0432
-
(2014)
Proceedings. Biological Sciences/The Royal Society
-
-
Groh, C.1
Kelber, C.2
Grü Bel, K.3
Rössler, W.4
-
15
-
-
0344979754
-
Morphologic representation of visual and antennal information in the ant brain
-
2<229::aid-cne4>3.0.co;2-e
-
Gronenberg W, Hölldobler B. 1999. Morphologic representation of visual and antennal information in the ant brain. The Journal of Comparative Neurology 412:229–240. doi: 10.1002/(sici)1096-9861(19990920)412: 2<229::aid-cne4>3.0.co;2-e
-
(1999)
The Journal of Comparative Neurology
, vol.412
, pp. 229-240
-
-
Gronenberg, W.1
Hölldobler, B.2
-
16
-
-
0038439322
-
Mushroom body memoir: From maps to models
-
Heisenberg M. 2003. Mushroom body memoir: From maps to models. Nature Reviews. Neuroscience 4:266–275. doi: 10.1038/nrn1074
-
(2003)
Nature Reviews. Neuroscience
, vol.4
, pp. 266-275
-
-
Heisenberg, M.1
-
17
-
-
84949435106
-
Heterosynaptic plasticity underlies aversive olfactory learning in drosophila
-
Hige T, Aso Y, Modi MN, Rubin GM, Turner GC. 2015. Heterosynaptic plasticity underlies aversive olfactory learning in drosophila. Neuron 88:985–998. doi: 10.1016/j.neuron.2015.11.003
-
(2015)
Neuron
, vol.88
, pp. 985-998
-
-
Hige, T.1
Aso, Y.2
Modi, M.N.3
Rubin, G.M.4
Turner, G.C.5
-
18
-
-
80051752004
-
Cellular-resolution population imaging reveals robust sparse coding in the drosophila mushroom body
-
Honegger KS, Campbell RA, Turner GC. 2011. Cellular-resolution population imaging reveals robust sparse coding in the drosophila mushroom body. Journal of Neuroscience 31:11772–11785. doi: 10.1523/JNEUROSCI.1099-11.2011
-
(2011)
Journal of Neuroscience
, vol.31
, pp. 11772-11785
-
-
Honegger, K.S.1
Campbell, R.A.2
Turner, G.C.3
-
19
-
-
84868114222
-
A gal4-driver line resource for drosophila neurobiology
-
Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J, Iyer N, Fetter D, Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM, et al. 2012. A gal4-driver line resource for drosophila neurobiology. Cell Reports 2:991–1001. doi: 10.1016/j.celrep.2012.09.011
-
(2012)
Cell Reports
, vol.2
, pp. 991-1001
-
-
Jenett, A.1
Rubin, G.M.2
Ngo, T.T.3
Shepherd, D.4
Murphy, C.5
Dionne, H.6
Pfeiffer, B.D.7
Cavallaro, A.8
Hall, D.9
Jeter, J.10
Iyer, N.11
Fetter, D.12
Hausenfluck, J.H.13
Peng, H.14
Trautman, E.T.15
Svirskas, R.R.16
Myers, E.W.17
Iwinski, Z.R.18
Aso, Y.19
Depasquale, G.M.20
more..
-
20
-
-
84893486384
-
A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in drosophila
-
Karuppudurai T, Lin TY, Ting CY, Pursley R, Melnattur KV, Diao F, White BH, Macpherson LJ, Gallio M, Pohida T, Lee CH. 2014. A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in drosophila. Neuron 81:603–615. doi: 10.1016/j.neuron.2013.12.010
-
(2014)
Neuron
, vol.81
, pp. 603-615
-
-
Karuppudurai, T.1
Lin, T.Y.2
Ting, C.Y.3
Pursley, R.4
Melnattur, K.V.5
Diao, F.6
White, B.H.7
Macpherson, L.J.8
Gallio, M.9
Pohida, T.10
Lee, C.H.11
-
21
-
-
84910011690
-
Topographically distinct visual and olfactory inputs to the mushroom body in the swallowtail butterfly, papilio xuthus
-
Kinoshita M, Shimohigasshi M, Tominaga Y, Arikawa K, Homberg U. 2015. Topographically distinct visual and olfactory inputs to the mushroom body in the swallowtail butterfly, papilio xuthus. The Journal of Comparative Neurology 523:162–182. doi: 10.1002/cne.23674
-
(2015)
The Journal of Comparative Neurology
, vol.523
, pp. 162-182
-
-
Kinoshita, M.1
Shimohigasshi, M.2
Tominaga, Y.3
Arikawa, K.4
Homberg, U.5
-
22
-
-
84929240851
-
Gustatory learning and processing in the drosophila mushroom bodies
-
Kirkhart C, Scott K. 2015. Gustatory learning and processing in the drosophila mushroom bodies. Journal of Neuroscience 35:5950–5958. doi: 10.1523/JNEUROSCI.3930-14.2015
-
(2015)
Journal of Neuroscience
, vol.35
, pp. 5950-5958
-
-
Kirkhart, C.1
Scott, K.2
-
23
-
-
9244254745
-
Invertebrate synapsins: A single gene codes for several isoforms in drosophila
-
Klagges BR, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E. 1996. Invertebrate synapsins: A single gene codes for several isoforms in drosophila. Journal of Neuroscience 16:3154–3165.
-
(1996)
Journal of Neuroscience
, vol.16
, pp. 3154-3165
-
-
Klagges, B.R.1
Heimbeck, G.2
Godenschwege, T.A.3
Hofbauer, A.4
Pflugfelder, G.O.5
Reifegerste, R.6
Reisch, D.7
Schaupp, M.8
Buchner, S.9
Buchner, E.10
-
24
-
-
84862116019
-
Visual inputs to the mushroom body calyces of the whirligig beetle dineutus sublineatus: Modality switching in an insect
-
Lin C, Strausfeld NJ. 2012. Visual inputs to the mushroom body calyces of the whirligig beetle dineutus sublineatus: Modality switching in an insect. The Journal of Comparative Neurology 520:2562–2574. doi: 10.1002/cne.23158
-
(2012)
The Journal of Comparative Neurology
, vol.520
, pp. 2562-2574
-
-
Lin, C.1
Strausfeld, N.J.2
-
25
-
-
0033584335
-
Context generalization in drosophila visual learning requires the mushroom bodies
-
Liu L, Wolf R, Ernst R, Heisenberg M. 1999. Context generalization in drosophila visual learning requires the mushroom bodies. Nature 400:753–756. doi: 10.1038/23456
-
(1999)
Nature
, vol.400
, pp. 753-756
-
-
Liu, L.1
Wolf, R.2
Ernst, R.3
Heisenberg, M.4
-
26
-
-
84865231699
-
A subset of dopamine neurons signals reward for odour memory in drosophila
-
Liu C, Plaçais PY, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H. 2012. A subset of dopamine neurons signals reward for odour memory in drosophila. Nature 488:512–516. doi: 10.1038/nature11304
-
(2012)
Nature
, vol.488
, pp. 512-516
-
-
Liu, C.1
Plaçais, P.Y.2
Yamagata, N.3
Pfeiffer, B.D.4
Aso, Y.5
Friedrich, A.B.6
Siwanowicz, I.7
Rubin, G.M.8
Preat, T.9
Tanimoto, H.10
-
27
-
-
0023889195
-
Segregation of form, color, movement, and depth: Anatomy, physiology, and perception
-
Livingstone M, Hubel D. 1988. Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240:740–749. doi: 10.1126/science.3283936
-
(1988)
Science
, vol.240
, pp. 740-749
-
-
Livingstone, M.1
Hubel, D.2
-
28
-
-
84930929380
-
A dopamine-modulated neural circuit regulating aversive taste memory in drosophila
-
Masek P, Worden K, Aso Y, Rubin GM, Keene AC. 2015. A dopamine-modulated neural circuit regulating aversive taste memory in drosophila. Current Biology 25:1535–1541. doi: 10.1016/j.cub.2015.04.027
-
(2015)
Current Biology
, vol.25
, pp. 1535-1541
-
-
Masek, P.1
Worden, K.2
Aso, Y.3
Rubin, G.M.4
Keene, A.C.5
-
29
-
-
0000651147
-
The brain of the honeybee apis mellifera. I. The connections and spatial organization of the mushroom bodies
-
Mobbs PG. 1982. The brain of the honeybee apis mellifera. I. the connections and spatial organization of the mushroom bodies. Philosophical Transactions of the Royal Society B: Biological Sciences 298:309–354. doi: 10.1098/rstb.1982.0086
-
(1982)
Philosophical Transactions of the Royal Society B: Biological Sciences
, vol.298
, pp. 309-354
-
-
Mobbs, P.G.1
-
30
-
-
84860335172
-
Optic glomeruli and their inputs in drosophila share an organizational ground pattern with the antennal lobes
-
Mu L, Ito K, Bacon JP, Strausfeld NJ. 2012. Optic glomeruli and their inputs in drosophila share an organizational ground pattern with the antennal lobes. Journal of Neuroscience 32:6061–6071. doi: 10.1523/JNEUROSCI.0221-12.2012
-
(2012)
Journal of Neuroscience
, vol.32
, pp. 6061-6071
-
-
Mu, L.1
Ito, K.2
Bacon, J.P.3
Strausfeld, N.J.4
-
31
-
-
78650575223
-
Genetically encoded dendritic marker sheds light on neuronal connectivity in drosophila
-
Nicolaï LJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, Landgraf M, Annaert W, Hassan BA. 2010. Genetically encoded dendritic marker sheds light on neuronal connectivity in drosophila. Proceedings of the National Academy of Sciences of the United States of America 107:20553–20558. doi: 10.1073/pnas.1010198107
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 20553-20558
-
-
Nicolaï, L.J.1
Ramaekers, A.2
Raemaekers, T.3
Drozdzecki, A.4
Mauss, A.S.5
Yan, J.6
Landgraf, M.7
Annaert, W.8
Hassan, B.A.9
-
32
-
-
33745886229
-
Systematic analysis of the visual projection neurons of drosophila melanogaster. I. Lobula-specific pathways
-
Otsuna H, Ito K. 2006. Systematic analysis of the visual projection neurons of drosophila melanogaster. I. lobula-specific pathways. The Journal of Comparative Neurology 497:928–958. doi: 10.1002/cne.21015
-
(2006)
The Journal of Comparative Neurology
, vol.497
, pp. 928-958
-
-
Otsuna, H.1
Ito, K.2
-
33
-
-
49949103235
-
Higher order visual input to the mushroom bodies in the bee, bombus impatiens
-
Paulk AC, Gronenberg W. 2008. Higher order visual input to the mushroom bodies in the bee, bombus impatiens. Arthropod Structure & Development 37:443–458. doi: 10.1016/j.asd.2008.03.002
-
(2008)
Arthropod Structure & Development
, vol.37
, pp. 443-458
-
-
Paulk, A.C.1
Gronenberg, W.2
-
34
-
-
84885061302
-
Localization of the contacts between kenyon cells and aminergic neurons in the drosophila melanogaster brain using splitgfp reconstitution
-
Pech U, Pooryasin A, Birman S, Fiala A. 2013. Localization of the contacts between kenyon cells and aminergic neurons in the drosophila melanogaster brain using splitgfp reconstitution. The Journal of Comparative Neurology 521:3992–4026. doi: 10.1002/cne.23388
-
(2013)
The Journal of Comparative Neurology
, vol.521
, pp. 3992-4026
-
-
Pech, U.1
Pooryasin, A.2
Birman, S.3
Fiala, A.4
-
35
-
-
84883784750
-
Shocking revelations and saccharin sweetness in the study of drosophila olfactory memory
-
Perisse E, Burke C, Huetteroth W, Waddell S. 2013. Shocking revelations and saccharin sweetness in the study of drosophila olfactory memory. Current Biology 23:R752–763. doi: 10.1016/j.cub.2013.07.060
-
(2013)
Current Biology
, vol.23
, pp. R752-R763
-
-
Perisse, E.1
Burke, C.2
Huetteroth, W.3
Waddell, S.4
-
36
-
-
78951477322
-
Refinement of tools for targeted gene expression in drosophila
-
Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM. 2010. Refinement of tools for targeted gene expression in drosophila. Genetics 186:735–755. doi: 10.1534/genetics.110.119917
-
(2010)
Genetics
, vol.186
, pp. 735-755
-
-
Pfeiffer, B.D.1
Ngo, T.T.2
Hibbard, K.L.3
Murphy, C.4
Jenett, A.5
Truman, J.W.6
Rubin, G.M.7
-
39
-
-
84862520770
-
Fiji: An open-source platform for biological-image analysis
-
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9:676–682. doi: 10.1038/nmeth.2019
-
(2012)
Nature Methods
, vol.9
, pp. 676-682
-
-
Schindelin, J.1
Arganda-Carreras, I.2
Frise, E.3
Kaynig, V.4
Longair, M.5
Pietzsch, T.6
Preibisch, S.7
Rueden, C.8
Saalfeld, S.9
Schmid, B.10
Tinevez, J.Y.11
White, D.J.12
Hartenstein, V.13
Eliceiri, K.14
Tomancak, P.15
Cardona, A.16
-
42
-
-
0030895760
-
Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11:197–208. doi: 10.1016/0896-6273(93)90178-T Stocker RF, Heimbeck G, Gendre N, de Belle JS. 1997. Neuroblast ablation in drosophila P[GAL4] lines reveals origins of olfactory interneurons
-
5<443::AID-NEU1>3.0.CO;2-5
-
Skoulakis EM, Kalderon D, Davis RL. 1993. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11:197–208. doi: 10.1016/0896-6273(93)90178-T Stocker RF, Heimbeck G, Gendre N, de Belle JS. 1997. Neuroblast ablation in drosophila P[GAL4] lines reveals origins of olfactory interneurons. Journal of Neurobiology 32:443–456. doi: 10.1002/(SICI)1097-4695(199705) 32:5<443::AID-NEU1>3.0.CO;2-5
-
(1993)
Journal of Neurobiology
, vol.32
, pp. 443-456
-
-
Skoulakis, E.M.1
Kalderon, D.2
Davis, R.L.3
-
44
-
-
39149099082
-
Olfactory representations by drosophila mushroom body neurons
-
Turner GC, Bazhenov M, Laurent G. 2008. Olfactory representations by drosophila mushroom body neurons. Journal of Neurophysiology 99:734–746. doi: 10.1152/jn.01283.2007
-
(2008)
Journal of Neurophysiology
, vol.99
, pp. 734-746
-
-
Turner, G.C.1
Bazhenov, M.2
Laurent, G.3
-
45
-
-
84926475248
-
Shared mushroom body circuits underlie visual and olfactory memories in drosophila
-
Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H. 2014. Shared mushroom body circuits underlie visual and olfactory memories in drosophila. eLife 3:1–22. doi: 10.7554/eLife.02395
-
(2014)
Elife
, vol.3
, pp. 1-22
-
-
Vogt, K.1
Schnaitmann, C.2
Dylla, K.V.3
Knapek, S.4
Aso, Y.5
Rubin, G.M.6
Tanimoto, H.7
-
46
-
-
84930476230
-
The evolutionary diversity of insect retinal mosaics: Common design principles and emerging molecular logic
-
Wernet MF, Perry MW, Desplan C. 2015. The evolutionary diversity of insect retinal mosaics: Common design principles and emerging molecular logic. Trends in Genetics 31:316–328. doi: 10.1016/j.tig.2015.04.006
-
(2015)
Trends in Genetics
, vol.31
, pp. 316-328
-
-
Wernet, M.F.1
Perry, M.W.2
Desplan, C.3
-
47
-
-
84920550224
-
Genealogical correspondence of mushroom bodies across invertebrate phyla
-
Wolff GH, Strausfeld NJ. 2015. Genealogical correspondence of mushroom bodies across invertebrate phyla. Current Biology 25:38–44. doi: 10.1016/j.cub.2014.10.049
-
(2015)
Current Biology
, vol.25
, pp. 38-44
-
-
Wolff, G.H.1
Strausfeld, N.J.2
-
48
-
-
0037133972
-
Spatial representation of the glomerular map in the drosophila protocerebrum
-
Wong AM, Wang JW, Axel R. 2002. Spatial representation of the glomerular map in the drosophila protocerebrum. Cell 109:229–241. doi: 10.1016/S0092-8674(02)00707-9
-
(2002)
Cell
, vol.109
, pp. 229-241
-
-
Wong, A.M.1
Wang, J.W.2
Axel, R.3
-
49
-
-
84987809923
-
Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant camponotus rufipes
-
Yilmaz A, Lindenberg A, Albert S, Grü bel K, Spaethe J, Rössler W, Groh C. 2016. Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant camponotus rufipes. Developmental Neurobiology. doi: 10.1002/dneu.22374
-
(2016)
Developmental Neurobiology
-
-
Yilmaz, A.1
Lindenberg, A.2
Albert, S.3
Grü Bel, K.4
Spaethe, J.5
Rössler, W.6
Groh, C.7
-
50
-
-
34347374141
-
Dopamine-mushroom body circuit regulates saliency-based decision-making in drosophila
-
Zhang K, Guo JZ, Peng Y, Xi W, Guo A. 2007. Dopamine-mushroom body circuit regulates saliency-based decision-making in drosophila. Science 316:1901–1904. doi: 10.1126/science.1137357
-
(2007)
Science
, vol.316
, pp. 1901-1904
-
-
Zhang, K.1
Guo, J.Z.2
Peng, Y.3
Xi, W.4
Guo, A.5
-
51
-
-
84872564029
-
Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in drosophila
-
Zhang X, Liu H, Lei Z, Wu Z, Guo A. 2013a. Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in drosophila. The Journal of Experimental Biology 216:524–534. doi: 10.1242/jeb.079095
-
(2013)
The Journal of Experimental Biology
, vol.216
, pp. 524-534
-
-
Zhang, X.1
Liu, H.2
Lei, Z.3
Wu, Z.4
Guo, A.5
-
52
-
-
84877739303
-
Parallel pathways for cross-modal memory retrieval in drosophila
-
Zhang X, Ren Q, Guo A. 2013b. Parallel pathways for cross-modal memory retrieval in drosophila. Journal of Neuroscience 33:8784–8793. doi: 10.1523/JNEUROSCI.4631-12.2013
-
(2013)
Journal of Neuroscience
, vol.33
, pp. 8784-8793
-
-
Zhang, X.1
Ren, Q.2
Guo, A.3
-
53
-
-
0021346195
-
Neuronal development in the drosophila retina: Monoclonal antibodies as molecular probes
-
Zipursky SL, Venkatesh TR, Teplow DB, Benzer S. 1984. Neuronal development in the drosophila retina: Monoclonal antibodies as molecular probes. Cell 36:15–26. doi: 10.1016/0092-8674(84)90069-2
-
(1984)
Cell
, vol.36
, pp. 15-26
-
-
Zipursky, S.L.1
Venkatesh, T.R.2
Teplow, D.B.3
Benzer, S.4
|