메뉴 건너뛰기




Volumn 184, Issue , 2016, Pages 232-242

Auto-encoder based dimensionality reduction

Author keywords

Auto encoder; Dimensionality reduction; Dimensionality accuracy; Intrinsic dimensionality; Visualization

Indexed keywords

DATA REDUCTION; DATA VISUALIZATION; FLOW VISUALIZATION; NETWORK LAYERS; THREE DIMENSIONAL COMPUTER GRAPHICS; VISUALIZATION;

EID: 84971483938     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.08.104     Document Type: Article
Times cited : (800)

References (28)
  • 1
    • 0026190194 scopus 로고
    • A simple method to derive bounds on the size and to train multilayer neural networks
    • Sartori M.A., Antsaklis P.J. A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Trans. Neural Netw. 1991, 2(4):467-471.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.4 , pp. 467-471
    • Sartori, M.A.1    Antsaklis, P.J.2
  • 2
    • 84975519829 scopus 로고
    • Review of 'Perceptrons. an introduction to computational geometry'
    • Arbib M. Review of 'Perceptrons. an introduction to computational geometry'. IEEE Trans. Inf. Theory 1969, 15(6):738-739.
    • (1969) IEEE Trans. Inf. Theory , vol.15 , Issue.6 , pp. 738-739
    • Arbib, M.1
  • 3
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14(2):274-281.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.B.1
  • 4
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Yoshua Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends® Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 84871391768 scopus 로고    scopus 로고
    • Unsupervised feature learning and deep learning: a review and new perspectives
    • Yoshua Bengio, Aaron Courville, Pascal Vincent, Unsupervised feature learning and deep learning: a review and new perspectives, in: CoRR, 2012.
    • (2012) CoRR
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 7
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • Bourlard H., Kamp Y. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 1988, 59(4-5):291-294.
    • (1988) Biol. Cybern. , vol.59 , Issue.4-5 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 8
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Huang S.C., Huang Y.F. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans. Neural Netw. 1991, 2(1):47-55.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.1 , pp. 47-55
    • Huang, S.C.1    Huang, Y.F.2
  • 9
    • 11244307933 scopus 로고    scopus 로고
    • Geometrical interpretation and architecture selection of MLP
    • Xiang C., Ding S.Q., Lee T.H. Geometrical interpretation and architecture selection of MLP. IEEE Trans. Neural Netw. 2005, 16(1):84-96.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.1 , pp. 84-96
    • Xiang, C.1    Ding, S.Q.2    Lee, T.H.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes Corinna, Vapnik Vladimir Support-vector networks. Mach. Learn. 1995, 273-297.
    • (1995) Mach. Learn. , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Hinton Geoffrey A practical guide to training restricted Boltzmann machines. Neural Netw.: Tricks Trade 2012, 599-619.
    • (2012) Neural Netw.: Tricks Trade , pp. 599-619
    • Hinton, G.1
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton Geoffrey, Osindero Simon A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(2006).
    • (2006) Neural Comput. , vol.18 , Issue.2006
    • Hinton, G.1    Osindero, S.2
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton Geoffrey, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 16
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield J.J., Tank D.W. Neural computation of decisions in optimization problems. Biol. Cybern. 1985, 52(3):141-152.
    • (1985) Biol. Cybern. , vol.52 , Issue.3 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 17
    • 84897973224 scopus 로고    scopus 로고
    • A folded neural network autoencoder for dimensionality reduction
    • Wang J., He H.B., Prokhorov D.V. A folded neural network autoencoder for dimensionality reduction. Proc. Comput. Sci. 2012, 13:120-127.
    • (2012) Proc. Comput. Sci. , vol.13 , pp. 120-127
    • Wang, J.1    He, H.B.2    Prokhorov, D.V.3
  • 18
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer Mark A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37(2):233-243.
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky Alex, Ilya Sutskever, Hinton Geoffrey Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1097-1105.
    • (2012) Adv. Neural Inf. Process. Syst. , pp. 1097-1105
    • Krizhevsky, A.1    Ilya, S.2    Hinton, G.3
  • 21
    • 0034153465 scopus 로고    scopus 로고
    • Nonlinear autoassociation is not equivalent to PCA
    • Nathalie Japkowicz, Hanson S., Gluck M. Nonlinear autoassociation is not equivalent to PCA. Neural Comput. 2000, 12(3):531-545.
    • (2000) Neural Comput. , vol.12 , Issue.3 , pp. 531-545
    • Nathalie, J.1    Hanson, S.2    Gluck, M.3
  • 23
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network. four layers versus three
    • Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network. four layers versus three. IEEE Trans. Neural Netw. 1997, 8(2):251-255.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 26
    • 84975459884 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Matthew D. Zeiler, Rob Fergus, Visualizing and understanding convolutional networks, in: CoRR, 2013.
    • (2013) CoRR
    • Matthew, D.Z.1    Fergus, R.2
  • 27
    • 67649240306 scopus 로고    scopus 로고
    • Dimensionality reduction and reconstruction of data based on autoencoder network
    • Zhaohua Hu, Yaoliang Song Dimensionality reduction and reconstruction of data based on autoencoder network. J. Electron. Inf. Technol. 2009, 31(5):1189-1192.
    • (2009) J. Electron. Inf. Technol. , vol.31 , Issue.5 , pp. 1189-1192
    • Zhaohua, H.1    Yaoliang, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.