-
1
-
-
0026190194
-
A simple method to derive bounds on the size and to train multilayer neural networks
-
Sartori M.A., Antsaklis P.J. A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Trans. Neural Netw. 1991, 2(4):467-471.
-
(1991)
IEEE Trans. Neural Netw.
, vol.2
, Issue.4
, pp. 467-471
-
-
Sartori, M.A.1
Antsaklis, P.J.2
-
2
-
-
84975519829
-
Review of 'Perceptrons. an introduction to computational geometry'
-
Arbib M. Review of 'Perceptrons. an introduction to computational geometry'. IEEE Trans. Inf. Theory 1969, 15(6):738-739.
-
(1969)
IEEE Trans. Inf. Theory
, vol.15
, Issue.6
, pp. 738-739
-
-
Arbib, M.1
-
3
-
-
0037361264
-
Learning capability and storage capacity of two-hidden-layer feedforward networks
-
Huang G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14(2):274-281.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.2
, pp. 274-281
-
-
Huang, G.B.1
-
4
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio Yoshua Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2(1):1-127.
-
(2009)
Found. Trends® Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
6
-
-
84871391768
-
Unsupervised feature learning and deep learning: a review and new perspectives
-
Yoshua Bengio, Aaron Courville, Pascal Vincent, Unsupervised feature learning and deep learning: a review and new perspectives, in: CoRR, 2012.
-
(2012)
CoRR
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
7
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
Bourlard H., Kamp Y. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 1988, 59(4-5):291-294.
-
(1988)
Biol. Cybern.
, vol.59
, Issue.4-5
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
8
-
-
0025792215
-
Bounds on the number of hidden neurons in multilayer perceptrons
-
Huang S.C., Huang Y.F. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans. Neural Netw. 1991, 2(1):47-55.
-
(1991)
IEEE Trans. Neural Netw.
, vol.2
, Issue.1
, pp. 47-55
-
-
Huang, S.C.1
Huang, Y.F.2
-
9
-
-
11244307933
-
Geometrical interpretation and architecture selection of MLP
-
Xiang C., Ding S.Q., Lee T.H. Geometrical interpretation and architecture selection of MLP. IEEE Trans. Neural Netw. 2005, 16(1):84-96.
-
(2005)
IEEE Trans. Neural Netw.
, vol.16
, Issue.1
, pp. 84-96
-
-
Xiang, C.1
Ding, S.Q.2
Lee, T.H.3
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes Corinna, Vapnik Vladimir Support-vector networks. Mach. Learn. 1995, 273-297.
-
(1995)
Mach. Learn.
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
13
-
-
84872506495
-
A practical guide to training restricted Boltzmann machines
-
Hinton Geoffrey A practical guide to training restricted Boltzmann machines. Neural Netw.: Tricks Trade 2012, 599-619.
-
(2012)
Neural Netw.: Tricks Trade
, pp. 599-619
-
-
Hinton, G.1
-
14
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton Geoffrey, Osindero Simon A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(2006).
-
(2006)
Neural Comput.
, vol.18
, Issue.2006
-
-
Hinton, G.1
Osindero, S.2
-
15
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton Geoffrey, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
16
-
-
0021835689
-
Neural computation of decisions in optimization problems
-
Hopfield J.J., Tank D.W. Neural computation of decisions in optimization problems. Biol. Cybern. 1985, 52(3):141-152.
-
(1985)
Biol. Cybern.
, vol.52
, Issue.3
, pp. 141-152
-
-
Hopfield, J.J.1
Tank, D.W.2
-
17
-
-
84897973224
-
A folded neural network autoencoder for dimensionality reduction
-
Wang J., He H.B., Prokhorov D.V. A folded neural network autoencoder for dimensionality reduction. Proc. Comput. Sci. 2012, 13:120-127.
-
(2012)
Proc. Comput. Sci.
, vol.13
, pp. 120-127
-
-
Wang, J.1
He, H.B.2
Prokhorov, D.V.3
-
18
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer Mark A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37(2):233-243.
-
(1991)
AIChE J.
, vol.37
, Issue.2
, pp. 233-243
-
-
Kramer, M.A.1
-
19
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky Alex, Ilya Sutskever, Hinton Geoffrey Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1097-1105.
-
(2012)
Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Ilya, S.2
Hinton, G.3
-
21
-
-
0034153465
-
Nonlinear autoassociation is not equivalent to PCA
-
Nathalie Japkowicz, Hanson S., Gluck M. Nonlinear autoassociation is not equivalent to PCA. Neural Comput. 2000, 12(3):531-545.
-
(2000)
Neural Comput.
, vol.12
, Issue.3
, pp. 531-545
-
-
Nathalie, J.1
Hanson, S.2
Gluck, M.3
-
23
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network. four layers versus three
-
Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network. four layers versus three. IEEE Trans. Neural Netw. 1997, 8(2):251-255.
-
(1997)
IEEE Trans. Neural Netw.
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
-
25
-
-
84908500543
-
Generalized autoencoder: a neural network framework for dimensionality reduction
-
Wang Wei, Huang Yan, Wang Yizhou, Wang Liang, Generalized autoencoder: a neural network framework for dimensionality reduction, in: IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 496-503.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 496-503
-
-
Wei, W.1
Yan, H.2
Yizhou, W.3
Liang, W.4
-
26
-
-
84975459884
-
Visualizing and understanding convolutional networks
-
Matthew D. Zeiler, Rob Fergus, Visualizing and understanding convolutional networks, in: CoRR, 2013.
-
(2013)
CoRR
-
-
Matthew, D.Z.1
Fergus, R.2
-
27
-
-
67649240306
-
Dimensionality reduction and reconstruction of data based on autoencoder network
-
Zhaohua Hu, Yaoliang Song Dimensionality reduction and reconstruction of data based on autoencoder network. J. Electron. Inf. Technol. 2009, 31(5):1189-1192.
-
(2009)
J. Electron. Inf. Technol.
, vol.31
, Issue.5
, pp. 1189-1192
-
-
Zhaohua, H.1
Yaoliang, S.2
-
28
-
-
84898819011
-
Deep learning identity-preserving face space
-
Zhenyao Zhu, Ping Luo, Xiaogang Wang, Xiaoou Tang, Deep learning identity-preserving face space, in: IEEE International Conference on Computer Vision, 2013, pp. 113-120.
-
(2013)
IEEE International Conference on Computer Vision
, pp. 113-120
-
-
Zhu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
|