메뉴 건너뛰기




Volumn 7, Issue 10, 2016, Pages 1852-1858

Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells

Author keywords

[No Author keywords available]

Indexed keywords

ENERGY DISSIPATION; HETEROJUNCTIONS; HOT CARRIERS; NUMERICAL METHODS; OPEN CIRCUIT VOLTAGE; PHOTONS; PLASMONS; QUANTUM EFFICIENCY; SCHOTTKY BARRIER DIODES;

EID: 84971277789     PISSN: None     EISSN: 19487185     Source Type: Journal    
DOI: 10.1021/acs.jpclett.6b00879     Document Type: Article
Times cited : (78)

References (49)
  • 5
    • 84923502619 scopus 로고    scopus 로고
    • Plasmon-Induced Hot Carrier Science and Technology
    • Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-Induced Hot Carrier Science and Technology Nat. Nanotechnol. 2015, 10, 25-34 10.1038/nnano.2014.311
    • (2015) Nat. Nanotechnol. , vol.10 , pp. 25-34
    • Brongersma, M.L.1    Halas, N.J.2    Nordlander, P.3
  • 6
    • 84893213030 scopus 로고    scopus 로고
    • Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices
    • Clavero, C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices Nat. Photonics 2014, 8, 95-103 10.1038/nphoton.2013.238
    • (2014) Nat. Photonics , vol.8 , pp. 95-103
    • Clavero, C.1
  • 7
    • 84930195135 scopus 로고    scopus 로고
    • Photochemical Transformations on Plasmonic Metal Nanoparticles
    • Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical Transformations on Plasmonic Metal Nanoparticles Nat. Mater. 2015, 14, 567-576 10.1038/nmat4281
    • (2015) Nat. Mater. , vol.14 , pp. 567-576
    • Linic, S.1    Aslam, U.2    Boerigter, C.3    Morabito, M.4
  • 8
    • 84941118822 scopus 로고    scopus 로고
    • Direct Plasmon-Driven Photoelectrocatalysis
    • Robatjazi, H.; Bahauddin, S. M.; Doiron, C.; Thomann, I. Direct Plasmon-Driven Photoelectrocatalysis Nano Lett. 2015, 15, 6155-6161 10.1021/acs.nanolett.5b02453
    • (2015) Nano Lett. , vol.15 , pp. 6155-6161
    • Robatjazi, H.1    Bahauddin, S.M.2    Doiron, C.3    Thomann, I.4
  • 10
    • 84928806051 scopus 로고    scopus 로고
    • Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis
    • Dong, Y.; Choi, J.; Jeong, H.-K.; Son, D. H. Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis J. Am. Chem. Soc. 2015, 137, 5549-5554 10.1021/jacs.5b02026
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 5549-5554
    • Dong, Y.1    Choi, J.2    Jeong, H.-K.3    Son, D.H.4
  • 11
    • 84900448288 scopus 로고    scopus 로고
    • Nanoplasmonics for Chemistry
    • Baffou, G.; Quidant, R. Nanoplasmonics for Chemistry Chem. Soc. Rev. 2014, 43, 3898-3907 10.1039/c3cs60364d
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 3898-3907
    • Baffou, G.1    Quidant, R.2
  • 12
    • 84887981259 scopus 로고    scopus 로고
    • Plasmonic Materials for Energy: From Physics to Applications
    • Boriskina, S. V.; Ghasemi, H.; Chen, G. Plasmonic Materials for Energy: From Physics to Applications Mater. Today 2013, 16, 375-386 10.1016/j.mattod.2013.09.003
    • (2013) Mater. Today , vol.16 , pp. 375-386
    • Boriskina, S.V.1    Ghasemi, H.2    Chen, G.3
  • 16
    • 79955755424 scopus 로고    scopus 로고
    • Photodetection with Active Optical Antennas
    • Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with Active Optical Antennas Science 2011, 332, 702-704 10.1126/science.1203056
    • (2011) Science , vol.332 , pp. 702-704
    • Knight, M.W.1    Sobhani, H.2    Nordlander, P.3    Halas, N.J.4
  • 17
    • 83655192468 scopus 로고    scopus 로고
    • Plasmonic Energy Collection through Hot Carrier Extraction
    • Wang, F.; Melosh, N. A. Plasmonic Energy Collection through Hot Carrier Extraction Nano Lett. 2011, 11, 5426-5430 10.1021/nl203196z
    • (2011) Nano Lett. , vol.11 , pp. 5426-5430
    • Wang, F.1    Melosh, N.A.2
  • 18
    • 84942941337 scopus 로고    scopus 로고
    • Photon Upconversion with Hot Carriers in Plasmonic Systems
    • Naik, G. V.; Dionne, J. A. Photon Upconversion with Hot Carriers in Plasmonic Systems Appl. Phys. Lett. 2015, 107, 133902 10.1063/1.4932127
    • (2015) Appl. Phys. Lett. , vol.107 , pp. 133902
    • Naik, G.V.1    Dionne, J.A.2
  • 19
    • 34548180960 scopus 로고
    • Detailed Balance Limit of Efficiency of P-N Junction Solar Cells
    • Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of P-N Junction Solar Cells J. Appl. Phys. 1961, 32, 510-519 10.1063/1.1736034
    • (1961) J. Appl. Phys. , vol.32 , pp. 510-519
    • Shockley, W.1    Queisser, H.J.2
  • 20
    • 84893671141 scopus 로고    scopus 로고
    • Photovoltaics: An Alternative Sun for Solar Cells
    • Fan, S. Photovoltaics: An Alternative Sun for Solar Cells Nat. Nanotechnol. 2014, 9, 92-93 10.1038/nnano.2014.9
    • (2014) Nat. Nanotechnol. , vol.9 , pp. 92-93
    • Fan, S.1
  • 21
    • 77249099338 scopus 로고    scopus 로고
    • Plasmonics for Improved Photovoltaic Devices
    • Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices Nat. Mater. 2010, 9, 205-213 10.1038/nmat2629
    • (2010) Nat. Mater. , vol.9 , pp. 205-213
    • Atwater, H.A.1    Polman, A.2
  • 22
    • 84872976702 scopus 로고    scopus 로고
    • Towards an Optimized All Lattice-Matched InAlAs/InGaAsP/InGaAs Multijunction Solar Cell with Efficiency > 50%
    • Leite, M. S.; Woo, R. L.; Munday, J. N.; Hong, W. D.; Mesropian, S.; Law, D. C.; Atwater, H. A. Towards an Optimized All Lattice-Matched InAlAs/InGaAsP/InGaAs Multijunction Solar Cell with Efficiency > 50% Appl. Phys. Lett. 2013, 102, 033901 10.1063/1.4758300
    • (2013) Appl. Phys. Lett. , vol.102 , pp. 033901
    • Leite, M.S.1    Woo, R.L.2    Munday, J.N.3    Hong, W.D.4    Mesropian, S.5    Law, D.C.6    Atwater, H.A.7
  • 23
    • 0036529302 scopus 로고    scopus 로고
    • Quantum Dot Solar Cells
    • Nozik, A. Quantum Dot Solar Cells Phys. E 2002, 14, 115-120 10.1016/S1386-9477(02)00374-0
    • (2002) Phys. e , vol.14 , pp. 115-120
    • Nozik, A.1
  • 24
    • 61649105237 scopus 로고    scopus 로고
    • Distribution of Multiexciton Generation Rates in CdSe and InAs Nanocrystals
    • Rabani, E.; Baer, R. Distribution of Multiexciton Generation Rates in CdSe and InAs Nanocrystals Nano Lett. 2008, 8, 4488-4492 10.1021/nl802443c
    • (2008) Nano Lett. , vol.8 , pp. 4488-4492
    • Rabani, E.1    Baer, R.2
  • 25
    • 84896474704 scopus 로고    scopus 로고
    • High-Efficiency Carrier Multiplication through Direct Photogeneration of Multi-Excitons via Virtual Single-Exciton States
    • Schaller, R. D.; Agranovich, V. M.; Klimov, V. I. High-Efficiency Carrier Multiplication through Direct Photogeneration of Multi-Excitons via Virtual Single-Exciton States Nat. Phys. 2005, 1, 189-194 10.1038/nphys151
    • (2005) Nat. Phys. , vol.1 , pp. 189-194
    • Schaller, R.D.1    Agranovich, V.M.2    Klimov, V.I.3
  • 26
    • 2942696438 scopus 로고    scopus 로고
    • High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion
    • Schaller, R. D.; Klimov, V. I. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion Phys. Rev. Lett. 2004, 92, 186601 10.1103/PhysRevLett.92.186601
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 186601
    • Schaller, R.D.1    Klimov, V.I.2
  • 27
    • 84876374589 scopus 로고    scopus 로고
    • An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons
    • Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky, G. D.; Moskovits, M. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive From Surface Plasmons Nat. Nanotechnol. 2013, 8, 247-251 10.1038/nnano.2013.18
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 247-251
    • Mubeen, S.1    Lee, J.2    Singh, N.3    Kramer, S.4    Stucky, G.D.5    Moskovits, M.6
  • 28
    • 84922347551 scopus 로고    scopus 로고
    • Molecular Interfaces for Plasmonic Hot Electron Photovoltaics
    • Pelayo Garcia de Arquer, F.; Mihi, A.; Konstantatos, G. Molecular Interfaces for Plasmonic Hot Electron Photovoltaics Nanoscale 2015, 7, 2281-2288 10.1039/C4NR06356B
    • (2015) Nanoscale , vol.7 , pp. 2281-2288
    • Pelayo Garcia De Arquer, F.1    Mihi, A.2    Konstantatos, G.3
  • 32
    • 84922644562 scopus 로고    scopus 로고
    • Theoretical Predictions for Hot-Carrier Generation from Surface Plasmon Decay
    • Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard Iii, W. A.; Atwater, H. A. Theoretical Predictions for Hot-Carrier Generation from Surface Plasmon Decay Nat. Commun. 2014, 5, 5788 10.1038/ncomms6788
    • (2014) Nat. Commun. , vol.5 , pp. 5788
    • Sundararaman, R.1    Narang, P.2    Jermyn, A.S.3    Goddard, W.A.4    Atwater, H.A.5
  • 33
    • 84906696532 scopus 로고    scopus 로고
    • Plasmon-Induced Hot Carriers in Metallic Nanoparticles
    • Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-Induced Hot Carriers in Metallic Nanoparticles ACS Nano 2014, 8, 7630-7638 10.1021/nn502445f
    • (2014) ACS Nano , vol.8 , pp. 7630-7638
    • Manjavacas, A.1    Liu, J.G.2    Kulkarni, V.3    Nordlander, P.4
  • 34
    • 84903550782 scopus 로고    scopus 로고
    • Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon
    • Bernardi, M.; Vigil-Fowler, D.; Lischner, J.; Neaton, J. B.; Louie, S. G. Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon Phys. Rev. Lett. 2014, 112, 257402 10.1103/PhysRevLett.112.257402
    • (2014) Phys. Rev. Lett. , vol.112 , pp. 257402
    • Bernardi, M.1    Vigil-Fowler, D.2    Lischner, J.3    Neaton, J.B.4    Louie, S.G.5
  • 35
    • 84882352146 scopus 로고    scopus 로고
    • Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules
    • Govorov, A. O.; Zhang, H.; Gun'ko, Y. K. Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules J. Phys. Chem. C 2013, 117, 16616-16631 10.1021/jp405430m
    • (2013) J. Phys. Chem. C , vol.117 , pp. 16616-16631
    • Govorov, A.O.1    Zhang, H.2    Gun'Ko, Y.K.3
  • 36
    • 84898440338 scopus 로고    scopus 로고
    • Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement
    • Zhang, H.; Govorov, A. O. Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement J. Phys. Chem. C 2014, 118, 7606-7614 10.1021/jp500009k
    • (2014) J. Phys. Chem. C , vol.118 , pp. 7606-7614
    • Zhang, H.1    Govorov, A.O.2
  • 37
    • 84957565904 scopus 로고    scopus 로고
    • Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification
    • Shokri Kojori, H.; Yun, J.-H.; Paik, Y.; Kim, J.; Anderson, W. A.; Kim, S. J. Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification Nano Lett. 2016, 16, 250-254 10.1021/acs.nanolett.5b03625
    • (2016) Nano Lett. , vol.16 , pp. 250-254
    • Shokri Kojori, H.1    Yun, J.-H.2    Paik, Y.3    Kim, J.4    Anderson, W.A.5    Kim, S.J.6
  • 38
    • 84947092948 scopus 로고    scopus 로고
    • Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres
    • Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres Plasmonics 2015, 1-11 10.1007/s11468-015-0128-7
    • (2015) Plasmonics , pp. 1-11
    • Derkachova, A.1    Kolwas, K.2    Demchenko, I.3
  • 39
    • 84898071997 scopus 로고    scopus 로고
    • Quantum-Mechanical Prediction of Nanoscale Photovoltaics
    • Zhang, Y.; Meng, L.; Yam, C.; Chen, G. Quantum-Mechanical Prediction of Nanoscale Photovoltaics J. Phys. Chem. Lett. 2014, 5, 1272-1277 10.1021/jz5003154
    • (2014) J. Phys. Chem. Lett. , vol.5 , pp. 1272-1277
    • Zhang, Y.1    Meng, L.2    Yam, C.3    Chen, G.4
  • 40
    • 84946593610 scopus 로고    scopus 로고
    • Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells
    • Meng, L.; Yam, C.; Zhang, Y.; Wang, R.; Chen, G. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells J. Phys. Chem. Lett. 2015, 6, 4410-4416 10.1021/acs.jpclett.5b01913
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 4410-4416
    • Meng, L.1    Yam, C.2    Zhang, Y.3    Wang, R.4    Chen, G.5
  • 41
    • 84925679126 scopus 로고    scopus 로고
    • A Multiscale Quantum Mechanics/Electromagnetics Method for Device Simulations
    • Yam, C.; Meng, L.; Zhang, Y.; Chen, G. A Multiscale Quantum Mechanics/Electromagnetics Method for Device Simulations Chem. Soc. Rev. 2015, 44, 1763-1776 10.1039/C4CS00348A
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 1763-1776
    • Yam, C.1    Meng, L.2    Zhang, Y.3    Chen, G.4
  • 42
    • 84898029093 scopus 로고    scopus 로고
    • Solar Energy Conversion via Hot Electron Internal Photoemission in Metallic Nanostructures: Efficiency Estimates
    • Leenheer, A. J.; Narang, P.; Lewis, N. S.; Atwater, H. A. Solar Energy Conversion via Hot Electron Internal Photoemission in Metallic Nanostructures: Efficiency Estimates J. Appl. Phys. 2014, 115, 134301 10.1063/1.4870040
    • (2014) J. Appl. Phys. , vol.115 , pp. 134301
    • Leenheer, A.J.1    Narang, P.2    Lewis, N.S.3    Atwater, H.A.4
  • 43
    • 84865445055 scopus 로고    scopus 로고
    • Plasmon-Enhanced Internal Photoemission for Photovoltaics: Theoretical Efficiency Limits
    • White, T. P.; Catchpole, K. R. Plasmon-Enhanced Internal Photoemission for Photovoltaics: Theoretical Efficiency Limits Appl. Phys. Lett. 2012, 101, 073905 10.1063/1.4746425
    • (2012) Appl. Phys. Lett. , vol.101 , pp. 073905
    • White, T.P.1    Catchpole, K.R.2
  • 44
    • 77954292865 scopus 로고    scopus 로고
    • Plasmon-Assisted Photocurrent Generation from Visible to Near-Infrared Wavelength Using a Au-Nanorods/TiO2 Electrode
    • Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H. Plasmon-Assisted Photocurrent Generation from Visible to Near-Infrared Wavelength Using a Au-Nanorods/TiO2 Electrode J. Phys. Chem. Lett. 2010, 1, 2031-2036 10.1021/jz1006675
    • (2010) J. Phys. Chem. Lett. , vol.1 , pp. 2031-2036
    • Nishijima, Y.1    Ueno, K.2    Yokota, Y.3    Murakoshi, K.4    Misawa, H.5
  • 45
    • 84986910142 scopus 로고    scopus 로고
    • Distinguishing between Plasmon-Induced and Photoexcited Carriers in a Device Geometry
    • Zheng, B. Y.; Zhao, H.; Manjavacas, A.; McClain, M.; Nordlander, P.; Halas, N. J. Distinguishing Between Plasmon-Induced and Photoexcited Carriers in a Device Geometry Nat. Commun. 2015, 6, 7797 10.1038/ncomms8797
    • (2015) Nat. Commun. , vol.6 , pp. 7797
    • Zheng, B.Y.1    Zhao, H.2    Manjavacas, A.3    McClain, M.4    Nordlander, P.5    Halas, N.J.6
  • 46
    • 84931291925 scopus 로고    scopus 로고
    • Theory and Computation of Hot Carriers Generated by Surface Plasmon Polaritons in Noble Metals
    • Bernardi, M.; Mustafa, J.; Neaton, J. B.; Louie, S. G. Theory and Computation of Hot Carriers Generated by Surface Plasmon Polaritons in Noble Metals Nat. Commun. 2015, 6, 7044 10.1038/ncomms8044
    • (2015) Nat. Commun. , vol.6 , pp. 7044
    • Bernardi, M.1    Mustafa, J.2    Neaton, J.B.3    Louie, S.G.4
  • 47
    • 84990943171 scopus 로고    scopus 로고
    • Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry
    • Brown, A. M.; Sundararaman, R.; Narang, P.; Goddard, W. A.; Atwater, H. A. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry ACS Nano 2016, 10, 957-966 10.1021/acsnano.5b06199
    • (2016) ACS Nano , vol.10 , pp. 957-966
    • Brown, A.M.1    Sundararaman, R.2    Narang, P.3    Goddard, W.A.4    Atwater, H.A.5
  • 48
    • 0030558014 scopus 로고    scopus 로고
    • Competing Nonradiative Channels for Hot Electron Induced Surface Photochemistry
    • Aeschlimann, M.; Bauer, M.; Pawlik, S. Competing Nonradiative Channels for Hot Electron Induced Surface Photochemistry Chem. Phys. 1996, 205, 127-141 10.1016/0301-0104(95)00372-X
    • (1996) Chem. Phys. , vol.205 , pp. 127-141
    • Aeschlimann, M.1    Bauer, M.2    Pawlik, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.