메뉴 건너뛰기




Volumn 2016, Issue , 2016, Pages

Extraction of chemical-induced diseases using prior knowledge and textual information

Author keywords

[No Author keywords available]

Indexed keywords

DANGEROUS GOODS;

EID: 84971006887     PISSN: 17580463     EISSN: None     Source Type: Journal    
DOI: 10.1093/database/baw046     Document Type: Article
Times cited : (41)

References (25)
  • 1
    • 84925709587 scopus 로고    scopus 로고
    • Text mining for adverse drug events: The promise
    • Drug Saf
    • Harpaz, R., Callahan, A., Tamang, S. et al. (2014) Text mining for adverse drug events: The promise, challenges, and state of the art. Drug Saf., 37, 777-790.
    • (2014) Challenges, and State of the Art , vol.37 , pp. 777-790
    • Harpaz, R.1    Callahan, A.2    Tamang, S.3
  • 2
    • 84875459651 scopus 로고    scopus 로고
    • Computational drug repositioning: From data to therapeutics. Clin
    • Hurle, M.R., Yang, L., Xie, Q. et al. (2013) Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 93, 335-341.
    • (2013) Pharmacol. Ther , vol.93 , pp. 335-341
    • Hurle, M.R.1    Yang, L.2    Xie, Q.3
  • 3
    • 84953343489 scopus 로고    scopus 로고
    • Exploring relation types for literature-based discovery
    • Preiss, J., Stevenson, M., and Gaizauskas, R. (2015) Exploring relation types for literature-based discovery. J. Am. Med. Inform. Assoc., 22, 987-992.
    • (2015) J. Am. Med. Inform. Assoc , vol.22 , pp. 987-992
    • Preiss, J.1    Stevenson, M.2    Gaizauskas, R.3
  • 4
    • 79960766975 scopus 로고    scopus 로고
    • Literature mining, ontologies and information visualization for drug repurposing
    • Andronis, C., Sharma, A., Virvilis, V. et al. (2011) Literature mining, ontologies and information visualization for drug repurposing. Brief. Bioinform., 12, 357-368.
    • (2011) Brief. Bioinform , vol.12 , pp. 357-368
    • Andronis, C.1    Sharma, A.2    Virvilis, V.3
  • 5
    • 84882760954 scopus 로고    scopus 로고
    • Using rule-based natural language processing to improve disease normalization in biomedical text
    • Kang, N., Singh, B., Afzal, Z. et al. (2013) Using rule-based natural language processing to improve disease normalization in biomedical text. J. Am. Med. Inform. Assoc., 20, 876-881.
    • (2013) J. Am. Med. Inform. Assoc , vol.20 , pp. 876-881
    • Kang, N.1    Singh, B.2    Afzal, Z.3
  • 6
    • 84890064920 scopus 로고    scopus 로고
    • DNorm: Disease name normalization with pairwise learning to rank
    • Leaman, R., Islamaj Dogan, R., and Lu, Z. (2013) DNorm: disease name normalization with pairwise learning to rank. Bioinformatics, 29, 2909-2917.
    • (2013) Bioinformatics , vol.29 , pp. 2909-2917
    • Leaman, R.1    Islamaj Dogan, R.2    Lu, Z.3
  • 7
    • 8444226720 scopus 로고    scopus 로고
    • Term identification in the biomedical literature
    • Krauthammer, M. and Nenadic, G. (2004) Term identification in the biomedical literature. J. Biomed. Inf., 37, 512-526.
    • (2004) J. Biomed. Inf , vol.37 , pp. 512-526
    • Krauthammer, M.1    Nenadic, G.2
  • 8
    • 84872217237 scopus 로고    scopus 로고
    • The extraction of pharmacogenetic and pharmacogenomic relations-A case study using PharmGKB
    • Buyko, E., Beisswanger, E., and Hahn, U. (2012) The extraction of pharmacogenetic and pharmacogenomic relations-a case study using PharmGKB. Pac. Symp. Biocomput., 376-387.
    • (2012) Pac. Symp. Biocomput , pp. 376-387
    • Buyko, E.1    Beisswanger, E.2    Hahn, U.3
  • 9
    • 84942412129 scopus 로고    scopus 로고
    • Extraction of potential adverse drug events from medical case reports
    • Gurulingappa, H., Mateen-Rajput, A., and Toldo, L. (2012) Extraction of potential adverse drug events from medical case reports. J. Biomed. Semantics, 3, 15.
    • (2012) J. Biomed. Semantics , vol.3 , pp. 15
    • Gurulingappa, H.1    Mateen-Rajput, A.2    Toldo, L.3
  • 10
    • 84897915860 scopus 로고    scopus 로고
    • Knowledge-based extraction of adverse drug events from biomedical text
    • Kang, N., Singh, B., Bui, C. et al. (2014) Knowledge-based extraction of adverse drug events from biomedical text. BMC Bioinformatics, 15, 64.
    • (2014) BMC Bioinformatics , vol.15 , pp. 64
    • Kang, N.1    Singh, B.2    Bui, C.3
  • 11
    • 84865989881 scopus 로고    scopus 로고
    • Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
    • Gurulingappa, H., Rajput, A.M., Roberts, A. et al. (2012) Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J. Biomed. Inf., 45, 885-892.
    • (2012) J. Biomed. Inf , vol.45 , pp. 885-892
    • Gurulingappa, H.1    Rajput, A.M.2    Roberts, A.3
  • 12
    • 84865957320 scopus 로고    scopus 로고
    • The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships
    • van Mulligen, E.M., Fourrier-Reglat, A., Gurwitz, D. et al. (2012) The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships. J. Biomed. Inf., 45, 879-884.
    • (2012) J. Biomed. Inf , vol.45 , pp. 879-884
    • Van Mulligen, E.M.1    Fourrier-Reglat, A.2    Gurwitz, D.3
  • 15
    • 84925619870 scopus 로고    scopus 로고
    • TmChem: A high performance approach for chemical named entity recognition and normalization
    • Leaman, R., Wei, C.H., and Lu, Z. (2015) tmChem: A high performance approach for chemical named entity recognition and normalization. J. Cheminform., 7, S3.
    • (2015) J. Cheminform , vol.7 , pp. S3
    • Leaman, R.1    Wei, C.H.2    Lu, Z.3
  • 16
    • 84892698876 scopus 로고    scopus 로고
    • A CTDPfizer collaboration: Manual curation of 88, 000 scientific articles text mined for drug-disease and drug-phenotype interactions
    • bat080
    • Davis, A.P., Wiegers, T.C., Roberts, P.M. et al. (2013) A CTDPfizer collaboration: manual curation of 88, 000 scientific articles text mined for drug-disease and drug-phenotype interactions. Database, 2013, bat080.
    • (2013) Database
    • Davis, A.P.1    Wiegers, T.C.2    Roberts, P.M.3
  • 17
    • 84925683427 scopus 로고    scopus 로고
    • CHEMDNER: The drugs and chemical names extraction challenge
    • Krallinger, M., Leitner, F., Rabal, O. et al. (2015) CHEMDNER: The drugs and chemical names extraction challenge. J. Cheminform., 7, S1.
    • (2015) J. Cheminform , vol.7 , pp. S1
    • Krallinger, M.1    Leitner, F.2    Rabal, O.3
  • 19
    • 0345863927 scopus 로고    scopus 로고
    • The Unified Medical Language System (UMLS): Integrating biomedical terminology
    • Bodenreider, O. (2004) The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Res., 32, D267-D270.
    • (2004) Nucleic Acids Res , vol.32 , pp. D267-D270
    • Bodenreider, O.1
  • 20
    • 84888064144 scopus 로고    scopus 로고
    • Aggregating UMLS semantic types for reducing conceptual complexity
    • McCray, A.T., Burgun, A., and Bodenreider, O. (2001) Aggregating UMLS semantic types for reducing conceptual complexity. Medinfo, 10, 216-220.
    • (2001) Medinfo , vol.10 , pp. 216-220
    • McCray, A.T.1    Burgun, A.2    Bodenreider, O.3
  • 21
    • 0041627757 scopus 로고    scopus 로고
    • A simple algorithm for identifying abbreviation definitions in biomedical text
    • Schwartz, A.S. and Hearst, M.A. (2003) A simple algorithm for identifying abbreviation definitions in biomedical text. Pac. Symp. Biocomput., 4, 451-462.
    • (2003) Pac. Symp. Biocomput , vol.4 , pp. 451-462
    • Schwartz, A.S.1    Hearst, M.A.2
  • 22
    • 38449109471 scopus 로고    scopus 로고
    • Combining lexical and semantic methods of inter-terminology mapping using the UMLS
    • Fung, K.W., Bodenreider, O., Aronson, A. et al. (2007) Combining lexical and semantic methods of inter-terminology mapping using the UMLS. Stud. Health Technol. Inform., 129, 605-609.
    • (2007) Stud. Health Technol. Inform , vol.129 , pp. 605-609
    • Fung, K.W.1    Bodenreider, O.2    Aronson, A.3
  • 23
    • 84870453566 scopus 로고    scopus 로고
    • SemMedDB: A PubMed-scale repository of biomedical semantic predications
    • Kilicoglu, H., Shin, D., Fiszman, M. et al. (2012) SemMedDB: A PubMed-scale repository of biomedical semantic predications. Bioinformatics, 28, 3158-3160.
    • (2012) Bioinformatics , vol.28 , pp. 3158-3160
    • Kilicoglu, H.1    Shin, D.2    Fiszman, M.3
  • 25
    • 70449720821 scopus 로고    scopus 로고
    • Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD)
    • Wiegers, T.C., Davis, A.P., Cohen, K.B. et al. (2009) Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD). BMC Bioinformatics., 10, 326.
    • (2009) BMC Bioinformatics , vol.10 , pp. 326
    • Wiegers, T.C.1    Davis, A.P.2    Cohen, K.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.