메뉴 건너뛰기




Volumn 28, Issue 6, 2016, Pages 1602-1606

A Bayesian Classification Approach Using Class-Specific Features for Text Categorization

Author keywords

class specific features; dimension reduction; Feature selection; naive Bayes; PDF projection and estimation; text categorization

Indexed keywords

BENCHMARKING; DATA MINING; FEATURE EXTRACTION; TEXT PROCESSING;

EID: 84968876693     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2016.2522427     Document Type: Article
Times cited : (147)

References (25)
  • 1
    • 0033346015 scopus 로고    scopus 로고
    • Automatic text categorization and its application to text retrieval
    • Nov./Dec.
    • W. Lam, M. Ruiz, and P. Srinivasan, "Automatic text categorization and its application to text retrieval," IEEE Trans. Knowl. Data Eng., vol. 11, no. 6, pp. 865-879, Nov./Dec. 1999.
    • (1999) IEEE Trans. Knowl. Data Eng. , vol.11 , Issue.6 , pp. 865-879
    • Lam, W.1    Ruiz, M.2    Srinivasan, P.3
  • 2
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani, "Machine learning in automated text categorization," ACM Comput. Surveys, vol. 34, no. 1, pp. 1-47, 2002.
    • (2002) ACM Comput. Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 3
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman, "An extensive empirical study of feature selection metrics for text classification," The J. Mach. Learn. Res., vol. 3, pp. 1289-1305, 2003.
    • (2003) The J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 4
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr.
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 5
    • 0033328818 scopus 로고    scopus 로고
    • Class-specific feature sets in classification
    • Dec.
    • P. M. Baggenstoss, "Class-specific feature sets in classification," IEEE Trans. Signal Process., vol. 47, no. 12, pp. 3428-3432, Dec. 1999.
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.12 , pp. 3428-3432
    • Baggenstoss, P.M.1
  • 6
    • 0037334364 scopus 로고    scopus 로고
    • The pdf projection theorem and the class-specific method
    • Mar.
    • P. M. Baggenstoss, "The pdf projection theorem and the class-specific method," IEEE Trans. Signal Process., vol. 51, no. 3, pp. 672-685, Mar. 2003.
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.3 , pp. 672-685
    • Baggenstoss, P.M.1
  • 7
    • 0001673996 scopus 로고    scopus 로고
    • A comparison of event models for naive Bayes text classification
    • A. McCallum and K. Nigam, "A comparison of event models for naive Bayes text classification," in Proc. Workshop Learn. for Text Categorization, 1998, vol. 752, pp. 41 -48.
    • (1998) Proc. Workshop Learn. for Text Categorization , vol.752 , pp. 41-48
    • McCallum, A.1    Nigam, K.2
  • 10
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • D. D. Lewis, "Naive (Bayes) at forty: The independence assumption in information retrieval," in Proc. 10th Eur. Conf. Mach. Learn., 1998, pp. 4-15.
    • (1998) Proc. 10th Eur. Conf. Mach. Learn. , pp. 4-15
    • Lewis, D.D.1
  • 11
    • 0002346866 scopus 로고    scopus 로고
    • Hierarchically classifying documents using very few words
    • D. Koller and M. Sahami, "Hierarchically classifying documents using very few words," in Proc. 14th Int. Conf. Mach. Learn., 1997, pp. 170-178.
    • (1997) Proc. 14th Int. Conf. Mach. Learn. , pp. 170-178
    • Koller, D.1    Sahami, M.2
  • 12
    • 0032274556 scopus 로고    scopus 로고
    • Classification of text documents
    • Y. H. Li and A. K. Jain, "Classification of text documents," The Comput. J., vol. 41, no. 8, pp. 537-546, 1998.
    • (1998) The Comput. J. , vol.41 , Issue.8 , pp. 537-546
    • Li, Y.H.1    Jain, A.K.2
  • 13
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims, "Text categorization with support vector machines: Learning with many relevant features," in Proc. 10th Eur. Conf. Mach. Learn., 1998, pp. 137-142.
    • (1998) Proc. 10th Eur. Conf. Mach. Learn. , pp. 137-142
    • Joachims, T.1
  • 14
    • 84937796378 scopus 로고    scopus 로고
    • ENN: Extended nearest neighbor method for pattern recognition [research frontier]
    • Aug.
    • B. Tang and H. He, "ENN: Extended nearest neighbor method for pattern recognition [research frontier]," IEEE Comput. Intell. Mag., vol. 10, no. 3, pp. 52-60, Aug. 2015.
    • (2015) IEEE Comput. Intell. Mag. , vol.10 , Issue.3 , pp. 52-60
    • Tang, B.1    He, H.2
  • 18
    • 84901425408 scopus 로고    scopus 로고
    • A GA-based RBF classifier with class-dependent features
    • X. Fu and L. Wang, "A GA-based RBF classifier with class-dependent features," in Proc. Congress Evol. Comput., 2002, vol. 2, pp. 1890-1894.
    • (2002) Proc. Congress Evol. Comput. , vol.2 , pp. 1890-1894
    • Fu, X.1    Wang, L.2
  • 19
    • 48949116216 scopus 로고    scopus 로고
    • A general wrapper approach to selection of class-dependent features
    • Jul.
    • L. Wang, N. Zhou, and F. Chu, "A general wrapper approach to selection of class- dependent features," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1267-1278, Jul. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.7 , pp. 1267-1278
    • Wang, L.1    Zhou, N.2    Chu, F.3
  • 20
    • 33847666011 scopus 로고    scopus 로고
    • Asymptotically optimal approximation of multidimensional pdf's by lower dimensional pdf's
    • Feb.
    • S. Kay, "Asymptotically optimal approximation of multidimensional pdf's by lower dimensional pdf's," IEEE Trans. Signal Process., vol. 55, no. 2, pp. 725-729, Feb. 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.2 , pp. 725-729
    • Kay, S.1
  • 21
    • 85027953845 scopus 로고    scopus 로고
    • A parametric classification rule based on the exponentially embedded family
    • Feb.
    • B. Tang, H. He, Q. Ding, and S. Kay, "A parametric classification rule based on the exponentially embedded family," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 367-377, Feb. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.2 , pp. 367-377
    • Tang, B.1    He, H.2    Ding, Q.3    Kay, S.4
  • 22
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • Dec.
    • D. Cai, X. He, and J. Han, "Document clustering using locality preserving indexing," IEEE Trans. Knowl. Data Eng., vol. 17, no. 12, pp. 1624-1637, Dec. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 24
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep.
    • H. He and E. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.2
  • 25
    • 84963595704 scopus 로고    scopus 로고
    • KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning
    • B. Tang and H. He, "KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning," in Proc. IEEE Congress Evol. Comput., 2015, pp. 664-671.
    • (2015) Proc. IEEE Congress Evol. Comput. , pp. 664-671
    • Tang, B.1    He, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.