-
1
-
-
4043112177
-
Sustainable hydrogen production
-
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.
-
(2004)
Science
, vol.305
, pp. 972-974
-
-
Turner, J.A.1
-
2
-
-
33750440505
-
Computational methods: A search engine for catalysts
-
Mavrikakis, M. Computational methods: A search engine for catalysts. Nat. Mater. 2006, 5, 847–848.
-
(2006)
Nat. Mater.
, vol.5
, pp. 847-848
-
-
Mavrikakis, M.1
-
3
-
-
84876850442
-
Water electrolysis: Divide and conquer
-
Mallouk, T. E. Water electrolysis: Divide and conquer. Nat. Chem. 2013, 5, 362–363.
-
(2013)
Nat. Chem.
, vol.5
, pp. 362-363
-
-
Mallouk, T.E.1
-
4
-
-
33750453016
-
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
-
Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.
-
(2006)
Nat. Mater.
, vol.5
, pp. 909-913
-
-
Greeley, J.1
Jaramillo, T.F.2
Bonde, J.3
Chorkendorff, I.4
Nørskov, J.K.5
-
5
-
-
84921812382
-
Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution
-
Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 2015, 9, 931–940.
-
(2015)
ACS Nano
, vol.9
, pp. 931-940
-
-
Duan, J.J.1
Chen, S.2
Jaroniec, M.3
Qiao, S.Z.4
-
6
-
-
33744807207
-
Toward efficient hydrogen production at surfaces
-
Norskov, J. K.; Christensen, C. H. Toward efficient hydrogen production at surfaces. Science 2006, 312, 1322–1323.
-
(2006)
Science
, vol.312
, pp. 1322-1323
-
-
Norskov, J.K.1
Christensen, C.H.2
-
7
-
-
80053312320
-
Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
-
Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3878-3888
-
-
Merki, D.1
Hu, X.L.2
-
8
-
-
84856690904
-
Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution
-
Laursen, A. B.; Kegnæ s, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577–5591.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5577-5591
-
-
Laursen, A.B.1
Kegnæs, S.2
Dahl, S.3
Chorkendorff, I.4
-
9
-
-
84865592627
-
2
-
2. ACS Nano 2012, 6, 7311–7317.
-
(2012)
ACS Nano
, vol.6
, pp. 7311-7317
-
-
Eda, G.1
Fujita, T.2
Yamaguchi, H.3
Voiry, D.4
Chen, M.W.5
Chhowalla, M.6
-
10
-
-
84880372807
-
2 nanosheets
-
2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10274-10277
-
-
Lukowski, M.A.1
Daniel, A.S.2
Meng, F.3
Forticaux, A.4
Li, L.S.5
Jin, S.6
-
11
-
-
34447326950
-
2 nanocatalysts
-
2 nanocatalysts. Science 2007, 317, 100–102.
-
(2007)
Science
, vol.317
, pp. 100-102
-
-
Jaramillo, T.F.J.1
rgensen, K.P.2
Bonde, J.3
Nielsen, J.H.4
Horch, S.5
Chorkendorff, I.6
-
12
-
-
84875746233
-
2
-
2. J. Am. Chem. Soc. 2013, 135, 4584–4587.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 4584-4587
-
-
Chou, S.S.1
De, M.2
Kim, J.3
Byun, S.4
Dykstra, C.5
Yu, J.6
Huang, J.X.7
Dravid, V.P.8
-
13
-
-
84893323479
-
2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction
-
2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 2014, 6, 2131–2136.
-
(2014)
Nanoscale
, vol.6
, pp. 2131-2136
-
-
Chung, D.Y.1
Park, S.K.2
Chung, Y.H.3
Yu, S.H.4
Lim, D.H.5
Jung, N.6
Ham, H.C.7
Park, H.Y.8
Piao, Y.Z.9
Yoo, S.J.10
-
14
-
-
84890400622
-
2 nanosheets as catalysts for hydrogen evolution reaction
-
2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.
-
(2013)
Nano Lett.
, vol.13
, pp. 6222-6227
-
-
Voiry, D.1
Salehi, M.2
Silva, R.3
Fujita, T.4
Chen, M.W.5
Asefa, T.6
Shenoy, V.B.7
Eda, G.8
Chhowalla, M.9
-
15
-
-
84886416670
-
2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
-
2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5807-5813
-
-
Xie, J.F.1
Zhang, H.2
Li, S.3
Wang, R.X.4
Sun, X.5
Zhou, M.6
Zhou, J.F.7
Lou, X.W.8
Xie, Y.9
-
17
-
-
84891392470
-
2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution
-
2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2013, 5, 12794–12798.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 12794-12798
-
-
Yan, Y.1
Xia, B.Y.2
Ge, X.M.3
Liu, Z.L.4
Wang, J.Y.5
Wang, X.6
-
18
-
-
84889264336
-
2 ultrathin nanosheets for efficient hydrogen evolution
-
2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 17881-17888
-
-
Xie, J.F.1
Zhang, J.J.2
Li, S.3
Grote, F.4
Zhang, X.D.5
Zhang, H.6
Wang, R.X.7
Lei, Y.8
Pan, B.C.9
Xie, Y.10
-
19
-
-
79955891162
-
2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction
-
2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7296-7299
-
-
Li, Y.G.1
Wang, H.L.2
Xie, L.M.3
Liang, Y.Y.4
Hong, G.S.5
Dai, H.J.6
-
20
-
-
84925461017
-
2 catalysts for enhanced hydrogen evolution
-
2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.
-
(2015)
Nano Res.
, vol.8
, pp. 566-575
-
-
Wang, H.T.1
Tsai, C.2
Kong, D.S.3
Chan, K.R.A.-4
Pedersen, F.5
Nørskov, J.K.6
Cui, Y.7
-
21
-
-
84903639211
-
Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing
-
Youn, D. H.; Jang, J. W.; Kim, J. Y.; Jang, J. S.; Choi, S. H.; Lee, J. S. Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci. Rep. 2014, 4, 5492.
-
(2014)
Sci. Rep.
, vol.4
, pp. 5492
-
-
Youn, D.H.1
Jang, J.W.2
Kim, J.Y.3
Jang, J.S.4
Choi, S.H.5
Lee, J.S.6
-
22
-
-
84906537148
-
2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution
-
2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale 2014, 6, 10680–10685.
-
(2014)
Nanoscale
, vol.6
, pp. 10680-10685
-
-
Zhao, X.1
Zhu, H.2
Yang, X.R.3
-
23
-
-
84887817940
-
2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution
-
2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5326-5333
-
-
Liao, L.1
Zhu, J.2
Bian, X.J.3
Zhu, L.4
Scanlon, M.D.5
Girault, H.H.6
Liu, B.H.7
-
24
-
-
84928958255
-
Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction
-
Seo, B.; Jung, G. Y.; Sa, Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C.; Shin, H. S.; Kwak, S. K. et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 2015, 9, 3728–3739.
-
(2015)
ACS Nano
, vol.9
, pp. 3728-3739
-
-
Seo, B.1
Jung, G.Y.2
Sa, Y.J.3
Jeong, H.Y.4
Cheon, J.Y.5
Lee, J.H.6
Kim, H.Y.7
Kim, J.C.8
Shin, H.S.9
Kwak, S.K.10
-
25
-
-
84929583883
-
2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution
-
2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. Nano Energy 2015, 15, 335–342.
-
(2015)
Nano Energy
, vol.15
, pp. 335-342
-
-
Ye, T.-N.1
Lv, L.-B.2
Xu, M.3
Zhang, B.4
Wang, K.-X.5
Su, J.6
Li, X.-H.7
Chen, J.-S.8
-
26
-
-
84961286533
-
Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions
-
Khan, M.; Yousaf, A. B.; Chen, M. M.; Wei, C. S.; Wu, X. B.; Huang, N. D.; Qi, Z. M.; Li, L. B. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 2016, 9, 837–848.
-
(2016)
Nano Res.
, vol.9
, pp. 837-848
-
-
Khan, M.1
Yousaf, A.B.2
Chen, M.M.3
Wei, C.S.4
Wu, X.B.5
Huang, N.D.6
Qi, Z.M.7
Li, L.B.8
-
27
-
-
6344284982
-
Direct synthesis of a macroscale single-walled carbon nanotube non-woven material
-
Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.
-
(2004)
Adv. Mater.
, vol.16
, pp. 1529-1534
-
-
Song, L.1
Ci, L.2
Lv, L.3
Zhou, Z.4
Yan, X.5
Liu, D.6
Yuan, H.7
Gao, Y.8
Wang, J.9
Liu, L.10
-
28
-
-
84867573954
-
Raman study of single wall carbon nanotube thin films treated by laser irradiation and dynamic and isothermal oxidation
-
Markovic, Z.; Kepic, D.; Antunovic, I. H.; Nikolic, M.; Dramicanin, M.; Cincovic, M. M.; Markovic, B. T. Raman study of single wall carbon nanotube thin films treated by laser irradiation and dynamic and isothermal oxidation. J. Raman Spectrosc. 2012, 43, 1413–1422.
-
(2012)
J. Raman Spectrosc.
, vol.43
, pp. 1413-1422
-
-
Markovic, Z.1
Kepic, D.2
Antunovic, I.H.3
Nikolic, M.4
Dramicanin, M.5
Cincovic, M.M.6
Markovic, B.T.7
-
29
-
-
84880270219
-
Self-assembly of hierarchical MoSx/CNT nanocomposites (2 < x < 3): Towards high performance anode materials for lithium ion batteries
-
Shi, Y. M.; Wang, Y.; Wong, J. I.; Tan, A. Y. S.; Hsu, C. L.; Li, L. J.; Lu, Y. C.; Yang, H. Y. Self-assembly of hierarchical MoSx/CNT nanocomposites (2 < x < 3): Towards high performance anode materials for lithium ion batteries. Sci. Rep. 2013, 3, 2169.
-
(2013)
Sci. Rep.
, vol.3
, pp. 2169
-
-
Shi, Y.M.1
Wang, Y.2
Wong, J.I.3
Tan, A.Y.S.4
Hsu, C.L.5
Li, L.J.6
Lu, Y.C.7
Yang, H.Y.8
-
32
-
-
84873335713
-
Highly efficient electrocatalytic hydrogen production by MoSx grown on grapheneprotected 3D Ni foams
-
Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on grapheneprotected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.
-
(2013)
Adv. Mater.
, vol.25
, pp. 756-760
-
-
Chang, Y.H.1
Lin, C.T.2
Chen, T.Y.3
Hsu, C.L.4
Lee, Y.H.5
Zhang, W.J.6
Wei, K.H.7
Li, L.J.8
-
33
-
-
80054036548
-
2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials
-
2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.
-
(2011)
Nano Lett.
, vol.11
, pp. 4168-4175
-
-
Chen, Z.B.1
Cummins, D.2
Reinecke, B.N.3
Clark, E.4
Sunkara, M.K.5
Jaramillo, T.F.6
-
34
-
-
0642268701
-
Soft-X-ray response of transitionmetal layer compounds
-
Sonntag, B.; Brown, F. C. Soft-X-ray response of transitionmetal layer compounds. Phys. Rev. B 1974, 10, 2300–2306.
-
(1974)
Phys. Rev. B
, vol.10
, pp. 2300-2306
-
-
Sonntag, B.1
Brown, F.C.2
-
36
-
-
84866639565
-
Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells
-
Zhang, L.; Ji, L. W.; Glans, P. A.; Zhang, Y. G.; Zhu, J. F.; Guo, J. H. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys. Chem. Chem. Phys. 2012, 14, 13670–13675.
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 13670-13675
-
-
Zhang, L.1
Ji, L.W.2
Glans, P.A.3
Zhang, Y.G.4
Zhu, J.F.5
Guo, J.H.6
-
37
-
-
83055161614
-
Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells
-
Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 18522-18525
-
-
Ji, L.W.1
Rao, M.M.2
Zheng, H.M.3
Zhang, L.4
Li, Y.C.5
Duan, W.H.6
Guo, J.H.7
Cairns, E.J.8
Zhang, Y.G.9
|