-
1
-
-
85011748576
-
Guideline on the choice of the non-inferiority margin
-
Committee for medical products for human use (CHMP) (2005). Guideline on the choice of the non-inferiority margin. Available at:http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003636.pdf. Accessed November 12, 2015
-
(2005)
Accessed November
, vol.12
, pp. 2015
-
-
-
2
-
-
0032886394
-
Modification of sample size in group sequential clinical trials
-
Cui, L., Hung, H. M. J., Wang, S. J., (1999). Modification of sample size in group sequential clinical trials. Biometrics 55:853–857. DOI:10.1111/j.0006-341X.1999.00853.x
-
(1999)
Biometrics
, vol.55
, pp. 853-857
-
-
Cui, L.1
Hung, H.M.J.2
Wang, S.J.3
-
3
-
-
0037472837
-
Non-inferiority trials: design concepts and issues: the encounters of academic consultants in statistics
-
D’Agostino, R. B., Massaro, J. M., Sullivan, L. M., (2003). Non-inferiority trials:design concepts and issues:the encounters of academic consultants in statistics. Statistics in Medicine 22:169–186. DOI:10.1002/sim.1425
-
(2003)
Statistics in Medicine
, vol.22
, pp. 169-186
-
-
D’Agostino, R.B.1
Massaro, J.M.2
Sullivan, L.M.3
-
4
-
-
84872782188
-
Journal of Medicine
-
for the EMERALD Study Groups, New England:
-
Fishbane, S., Schiller, B., Locatelli, F., Covic, A. C., Provenzano, R., Wiecek, A., Levin, N. W., Kaplan, M., Macdougall, I. C., Francisco, C., Mayo, M. R., Polu, K. R., Duliege, A. M., Besarab, A., for the EMERALD Study Groups (2013). Peginesatide in patients with anemia undergoing hemodialysis. New England Journal of Medicine 368:307–19. DOI:10.1056/NEJMoa1203165
-
(2013)
Peginesatide in patients with anemia undergoing hemodialysis
-
-
Fishbane, S.1
Schiller, B.2
Locatelli, F.3
Covic, A.C.4
Provenzano, R.5
Wiecek, A.6
Levin, N.W.7
Kaplan, M.8
Macdougall, I.C.9
Francisco, C.10
Mayo, M.R.11
Polu, K.R.12
Duliege, A.M.13
Besarab, A.14
-
5
-
-
85011728717
-
Guidance for industry non-inferiority trials. Rockville, MD: Food and Drug Administration
-
FDA
-
Food and Drug Administration (FDA). (2010). Guidance for industry non-inferiority trials. Rockville, MD:Food and Drug Administration. Available at:http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM202140.pdf. Accessed July 14, 2015
-
(2010)
Accessed July
, vol.14
, pp. 2015
-
-
-
6
-
-
38949135933
-
Assessing non-inferiority: A combination approach
-
Gao, P., Ware, J. H., (2008). Assessing non-inferiority:A combination approach. Statistics in Medicine 27:392–406. DOI:10.1002/sim.2938
-
(2008)
Statistics in Medicine
, vol.27
, pp. 392-406
-
-
Gao, P.1
Ware, J.H.2
-
7
-
-
0001341675
-
Numerical computation of multivariate normal probabilities
-
Genz, A., (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics 1:141–149. DOI:10.1080/10618600.1992.10477010
-
(1992)
Journal of Computational and Graphical Statistics
, vol.1
, pp. 141-149
-
-
Genz, A.1
-
8
-
-
29844441008
-
Establishing efficacy of a new experimental treatment in the ‘gold standard’ design
-
Hauschke, D., Pigeot, I., (2005a). Establishing efficacy of a new experimental treatment in the ‘gold standard’ design. Biometrical Journal 47:782–786. DOI:10.1002/bimj.200510169
-
(2005)
Biometrical Journal
, vol.47
, pp. 782-786
-
-
Hauschke, D.1
Pigeot, I.2
-
9
-
-
29844451225
-
Rejoinder to “Establishing efficacy of a new experimental treatment in the ‘gold standard’ design
-
Hauschke, D., Pigeot, I., (2005b). Rejoinder to “Establishing efficacy of a new experimental treatment in the ‘gold standard’ design”. Biometrical Journal 47:797–798. DOI:10.1002/bimj.200510179
-
(2005)
Biometrical Journal
, vol.47
, pp. 797-798
-
-
Hauschke, D.1
Pigeot, I.2
-
10
-
-
39449129871
-
Assessing non-inferiority of a new treatment in a three-arm trial in the presence of heteroscedasticity
-
Hasler, M., Vonk, R., Hothorn, L. A., (2008). Assessing non-inferiority of a new treatment in a three-arm trial in the presence of heteroscedasticity. Statistics in Medicine 27:490–503. DOI:10.1002/sim.3052.
-
(2008)
Statistics in Medicine
, vol.27
, pp. 490-503
-
-
Hasler, M.1
Vonk, R.2
Hothorn, L.A.3
-
11
-
-
84925248994
-
Group-sequential strategies in clinical trials with multiple co-primary endpoints
-
Hamasaki, T., Asakura, K., Evans, S. R., Sugimoto, T., Sozu, T., (2015). Group-sequential strategies in clinical trials with multiple co-primary endpoints. Statistics in Biopharmaceutical Research 7:36–54. DOI:10.1080/19466315.2014.1003090
-
(2015)
Statistics in Biopharmaceutical Research
, vol.7
, pp. 36-54
-
-
Hamasaki, T.1
Asakura, K.2
Evans, S.R.3
Sugimoto, T.4
Sozu, T.5
-
12
-
-
84872494740
-
Sample size determination for clinical trials with co-primary outcomes: exponential event times
-
Hamasaki, T., Sugimoto, T., Evans, S. R., Sozu, T., (2013). Sample size determination for clinical trials with co-primary outcomes:exponential event times. Pharmaceutical Statistics 12:28–34. DOI:10.1002/pst.1545
-
(2013)
Pharmaceutical Statistics
, vol.12
, pp. 28-34
-
-
Hamasaki, T.1
Sugimoto, T.2
Evans, S.R.3
Sozu, T.4
-
13
-
-
78650942468
-
On the three-arm non-inferiority trial including a placebo with a prespecified margin
-
Hida, E., Tango, T., (2011a). On the three-arm non-inferiority trial including a placebo with a prespecified margin. Statistics in Medicine 30:224–231. DOI:10.1002/sim.4099
-
(2011)
Statistics in Medicine
, vol.30
, pp. 224-231
-
-
Hida, E.1
Tango, T.2
-
14
-
-
80055069941
-
Response to Joachim Röhmel and Iris Pigeot
-
Hida, E., Tango, T., (2011b). Response to Joachim Röhmel and Iris Pigeot. Statistics in Medicine 30:3165. DOI:10.1002/sim.4313
-
(2011)
Statistics in Medicine
, vol.30
, pp. 3165
-
-
Hida, E.1
Tango, T.2
-
15
-
-
84881302277
-
Three-arm noninferiority trials with a prespecified margin for inference of the difference in the proportions of binary endpoints
-
Hida, E., Tango, T., (2013). Three-arm noninferiority trials with a prespecified margin for inference of the difference in the proportions of binary endpoints. Journal of Biopharmaceutical Statistics 23:774–789. DOI:10.1080/10543406.2013.789893
-
(2013)
Journal of Biopharmaceutical Statistics
, vol.23
, pp. 774-789
-
-
Hida, E.1
Tango, T.2
-
16
-
-
85011775219
-
ICH Harmonised Tripartite Guideline E10: choice of control group and related issues in clinical trials. July
-
2000
-
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2000). ICH Harmonised Tripartite Guideline E10:choice of control group and related issues in clinical trials. July 2000. Available at:http://www.ich.org/pdfICH/e10step4.pdf. Accessed July 14, 2015
-
(2000)
Accessed July
, vol.14
, pp. 2015
-
-
-
17
-
-
33846191097
-
Planning and analysis of three-arm non-inferiority trials with binary endpoints
-
Kieser, M., Friede, T., (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine 26:253–273. DOI:10.1002/sim.2543
-
(2007)
Statistics in Medicine
, vol.26
, pp. 253-273
-
-
Kieser, M.1
Friede, T.2
-
18
-
-
2642585618
-
Hypothesis testing in the “gold standard” design for proving the efficacy of an experimental treatment
-
Koch, A., Röhmel, J., (2004). Hypothesis testing in the “gold standard” design for proving the efficacy of an experimental treatment. Journal of Biopharmaceutical Statistics 14:315–325. DOI:10.1081/BIP-120037182
-
(2004)
Journal of Biopharmaceutical Statistics
, vol.14
, pp. 315-325
-
-
Koch, A.1
Röhmel, J.2
-
19
-
-
84880040485
-
Design and semiparametric analysis of non-inferiority trials with active and placebo control for censored time-to-event data
-
Kombrink, K., Munk, A., Friede, T., (2013). Design and semiparametric analysis of non-inferiority trials with active and placebo control for censored time-to-event data. Statistics in Medicine 32:3055–3066. DOI:10.1002/sim.5769
-
(2013)
Statistics in Medicine
, vol.32
, pp. 3055-3066
-
-
Kombrink, K.1
Munk, A.2
Friede, T.3
-
20
-
-
70449529019
-
Discrete sequential boundaries for clinical trials
-
Lan, K. K. G., DeMets, D. L., (1983). Discrete sequential boundaries for clinical trials. Biometrika 70:659–663. DOI:10.1093/biomet/70.3.659
-
(1983)
Biometrika
, vol.70
, pp. 659-663
-
-
Lan, K.K.G.1
DeMets, D.L.2
-
21
-
-
77956295377
-
A group sequential type design for three-arm non-inferiority trials with binary endpoints
-
Li, G., Gao, S., (2010). A group sequential type design for three-arm non-inferiority trials with binary endpoints. Biometrical Journal 52:504–518. DOI:10.1002/bimj.200900188
-
(2010)
Biometrical Journal
, vol.52
, pp. 504-518
-
-
Li, G.1
Gao, S.2
-
22
-
-
60249095140
-
The assessment of non-inferiority in a gold standard design with censored, exponentially distributed endpoints
-
Mielke, M., Munk, A., Schacht, A., (2008). The assessment of non-inferiority in a gold standard design with censored, exponentially distributed endpoints. Statistics in Medicine 27:5093–5110. DOI:10.1002/sim.3348
-
(2008)
Statistics in Medicine
, vol.27
, pp. 5093-5110
-
-
Mielke, M.1
Munk, A.2
Schacht, A.3
-
23
-
-
0018687930
-
A multiple testing procedure for clinical trials
-
O’Brien, P. C., Fleming T. R., (1979). A multiple testing procedure for clinical trials. Biometrics 35:549–556. DOI:10.2307/2530245
-
(1979)
Biometrics
, vol.35
, pp. 549-556
-
-
O’Brien, P.C.1
Fleming, T.R.2
-
24
-
-
0037473218
-
Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo
-
Pigeot, I, Schäfer, J., Röhmel, J., Hauschke, D., (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine 22:883–899. DOI:10.1002/sim.1450
-
(2003)
Statistics in Medicine
, vol.22
, pp. 883-899
-
-
Pigeot, I.1
Schäfer, J.2
Röhmel, J.3
Hauschke, D.4
-
25
-
-
0017744944
-
Group sequential methods in the design and analysis of clinical trials
-
Pocock, S. J., (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika 64:191–199. DOI:10.1093/biomet/64.2.191
-
(1977)
Biometrika
, vol.64
, pp. 191-199
-
-
Pocock, S.J.1
-
26
-
-
80055086038
-
Statistical strategies for the analysis of clinical trials with an experimental treatment, an active control and placebo, and a prespecified fixed non-inferiority margin for the difference in means
-
Röhmel, J., Pigeot, I., (2011). Statistical strategies for the analysis of clinical trials with an experimental treatment, an active control and placebo, and a prespecified fixed non-inferiority margin for the difference in means. Statistics in Medicine 30:3162–3164. DOI:10.1002/sim.4299
-
(2011)
Statistics in Medicine
, vol.30
, pp. 3162-3164
-
-
Röhmel, J.1
Pigeot, I.2
-
28
-
-
84887149876
-
Group sequential designs for three-arm ‘gold standard’ non-inferiority trials with fixed margin
-
Schlömer, P., Brannath, W., (2013). Group sequential designs for three-arm ‘gold standard’ non-inferiority trials with fixed margin. Statistics in Medicine 32:4875–4899. DOI:10.1002/sim.5950
-
(2013)
Statistics in Medicine
, vol.32
, pp. 4875-4899
-
-
Schlömer, P.1
Brannath, W.2
-
29
-
-
84870256039
-
A general approach for sample size calculation for the three-arm ‘gold standard’ non-inferiority design
-
DOO: 10.1002/sim.5461
-
Stucke, K., Kieser, M., (2012). A general approach for sample size calculation for the three-arm ‘gold standard’ non-inferiority design. Statistics in Medicine 31:3579–3596. DOO:10.1002/sim.5461
-
(2012)
Statistics in Medicine
, vol.31
, pp. 3579-3596
-
-
Stucke, K.1
Kieser, M.2
-
30
-
-
84858424146
-
A convenient formula for sample size calculations in clinical trials with multiple co-primary continuous endpoints
-
Sugimoto, T., Sozu, T., Hamasaki, T., (2012). A convenient formula for sample size calculations in clinical trials with multiple co-primary continuous endpoints. Pharmaceutical Statistics 11:118–128. DOI:10.1002/pst.505
-
(2012)
Pharmaceutical Statistics
, vol.11
, pp. 118-128
-
-
Sugimoto, T.1
Sozu, T.2
Hamasaki, T.3
-
31
-
-
2642569237
-
Test of noninferiority via rate difference for three-arm clinical trials with placebo
-
Tang, M. L., Tang, N. S., (2004). Test of noninferiority via rate difference for three-arm clinical trials with placebo. Journal of Biopharmaceutical Statistics 14:337–347. DOI:10.1081/BIP-120037184
-
(2004)
Journal of Biopharmaceutical Statistics
, vol.14
, pp. 337-347
-
-
Tang, M.L.1
Tang, N.S.2
-
32
-
-
2642575785
-
Group sequential design and analysis of clinical equivalence assessment for generic nonsystematic drug products
-
Tsong, Y., Zhang, J., Wang, S. J., (2004). Group sequential design and analysis of clinical equivalence assessment for generic nonsystematic drug products. Journal of Biopharmaceutical Statistics 14:359–373. DOI:10.1081/BIP-120037186
-
(2004)
Journal of Biopharmaceutical Statistics
, vol.14
, pp. 359-373
-
-
Tsong, Y.1
Zhang, J.2
Wang, S.J.3
|