메뉴 건너뛰기




Volumn 73, Issue 6, 2017, Pages 985-996

Existence and regularity of solutions to time-fractional diffusion equations

Author keywords

Existence; Fractional diffusion equations; Regularity; Weighted H lder continuity; Weighted uniform boundedness

Indexed keywords

BOUNDARY VALUE PROBLEMS; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 84967113375     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2016.04.039     Document Type: Article
Times cited : (44)

References (36)
  • 1
    • 33847309315 scopus 로고    scopus 로고
    • Theory and Applications of Fractional Differential Equations
    • Elsevier Amsterdam
    • [1] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations. 2006, Elsevier, Amsterdam.
    • (2006)
    • Kilbas, A.A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 2
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • [2] Metzler, R., Klafter, J., The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 3
    • 0034032484 scopus 로고    scopus 로고
    • Application of a fractional advection–dispersion equation
    • [3] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., Application of a fractional advection–dispersion equation. Water Resour. Res. 36 (2000), 1403–1412.
    • (2000) Water Resour. Res. , vol.36 , pp. 1403-1412
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 4
    • 0034113992 scopus 로고    scopus 로고
    • The fractional-order governing equation of Lévy motion
    • [4] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., The fractional-order governing equation of Lévy motion. Water Resour. Res. 36 (2000), 1413–1423.
    • (2000) Water Resour. Res. , vol.36 , pp. 1413-1423
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 5
    • 0141496655 scopus 로고    scopus 로고
    • Fractional evolution equations in Banach spaces
    • (Thesis (Dr.)) Technische Universiteit Eindhoven The Netherlands. ProQuest LLC, Ann Arbor, MI
    • [5] Bajlekova, E.G., Fractional evolution equations in Banach spaces. (Thesis (Dr.)), 2001, Technische Universiteit Eindhoven, The Netherlands. ProQuest LLC, Ann Arbor, MI, 113.
    • (2001) , pp. 113
    • Bajlekova, E.G.1
  • 6
    • 0002745423 scopus 로고    scopus 로고
    • A fractional diffusion equation to decribe Lévy flights
    • [6] Chaves, A.S., A fractional diffusion equation to decribe Lévy flights. Phys. Lett. A 239 (1998), 13–16.
    • (1998) Phys. Lett. A , vol.239 , pp. 13-16
    • Chaves, A.S.1
  • 7
    • 85015138028 scopus 로고    scopus 로고
    • Global smooth solutions to a fourth-order quasilinear fractional evolution equation
    • Birkhauser Basel
    • [7] Clement, P., Zacher, R., Global smooth solutions to a fourth-order quasilinear fractional evolution equation. Functional Analysis and Evolution Equations, 2008, Birkhauser, Basel, 131–146.
    • (2008) Functional Analysis and Evolution Equations , pp. 131-146
    • Clement, P.1    Zacher, R.2
  • 8
    • 85015140566 scopus 로고    scopus 로고
    • Evolutionary equations driven by fractional Brownian motion
    • [8] Desch, G., Londen, S.O., Evolutionary equations driven by fractional Brownian motion. Stoch. Partial Differ. Equ.: Anal. Comput. 1 (2013), 424–454.
    • (2013) Stoch. Partial Differ. Equ.: Anal. Comput. , vol.1 , pp. 424-454
    • Desch, G.1    Londen, S.O.2
  • 9
    • 84953814539 scopus 로고    scopus 로고
    • Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space–time-dependent coefficients
    • [9] Magdziarz, M., Zorawik, T., Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space–time-dependent coefficients. Proc. Amer. Math. Soc., 2015.
    • (2015) Proc. Amer. Math. Soc.
    • Magdziarz, M.1    Zorawik, T.2
  • 10
    • 77950869887 scopus 로고    scopus 로고
    • Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation
    • [10] Caffarelli, L., Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. 171 (2010), 1903–1930.
    • (2010) Ann. of Math. , vol.171 , pp. 1903-1930
    • Caffarelli, L.1    Vasseur, A.2
  • 11
    • 84928954910 scopus 로고    scopus 로고
    • A novel high order space–time spectral method for the time fractional Fokker–Planck equation
    • [11] Zheng, M., Liu, F., Turner, I., et al. A novel high order space–time spectral method for the time fractional Fokker–Planck equation. SIAM J. Sci. Comput. 37 (2015), A701–A724.
    • (2015) SIAM J. Sci. Comput. , vol.37 , pp. A701-A724
    • Zheng, M.1    Liu, F.2    Turner, I.3
  • 12
    • 84940689072 scopus 로고    scopus 로고
    • Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives
    • [12] Liu, Z., Li, X., Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control Optim. 53 (2015), 1920–1933.
    • (2015) SIAM J. Control Optim. , vol.53 , pp. 1920-1933
    • Liu, Z.1    Li, X.2
  • 13
    • 56549085438 scopus 로고    scopus 로고
    • Maximum principle for the generalized time-fractional diffusion equation
    • [13] Luchko, Y., Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351 (2009), 218–223.
    • (2009) J. Math. Anal. Appl. , vol.351 , pp. 218-223
    • Luchko, Y.1
  • 14
    • 76449091249 scopus 로고    scopus 로고
    • Some uniqueness and existence results for the initial–boundary value problems for the generalized time-fractional diffusion equation
    • [14] Luchko, Y., Some uniqueness and existence results for the initial–boundary value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59 (2010), 1766–1772.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1766-1772
    • Luchko, Y.1
  • 15
    • 79956068443 scopus 로고    scopus 로고
    • Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
    • [15] Sakamoto, K., Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011), 426–447.
    • (2011) J. Math. Anal. Appl. , vol.382 , pp. 426-447
    • Sakamoto, K.1    Yamamoto, M.2
  • 16
    • 84924954118 scopus 로고    scopus 로고
    • Maximum principle for certain generalized time and space fractional diffusion equations
    • [16] Alsaedi, A., Ahmad, B., Kirane, M., Maximum principle for certain generalized time and space fractional diffusion equations. Quart. Appl. Math. 73 (2015), 163–175.
    • (2015) Quart. Appl. Math. , vol.73 , pp. 163-175
    • Alsaedi, A.1    Ahmad, B.2    Kirane, M.3
  • 17
    • 84893747471 scopus 로고    scopus 로고
    • Existence of mild solutions for fractional evolution equations
    • [17] Zhou, Y., Zhang, L., Shen, X.H., Existence of mild solutions for fractional evolution equations. J. Integral Equations Appl. 25 (2013), 557–586.
    • (2013) J. Integral Equations Appl. , vol.25 , pp. 557-586
    • Zhou, Y.1    Zhang, L.2    Shen, X.H.3
  • 18
    • 84885045311 scopus 로고    scopus 로고
    • Abstract Cauchy problem for fractional functional differential equations
    • [18] Zhou, Y., Jiao, F., Pečarić, J., Abstract Cauchy problem for fractional functional differential equations. Topol. Methods Nonlinear Anal. 42 (2013), 119–136.
    • (2013) Topol. Methods Nonlinear Anal. , vol.42 , pp. 119-136
    • Zhou, Y.1    Jiao, F.2    Pečarić, J.3
  • 19
    • 84957558534 scopus 로고    scopus 로고
    • Controllability for fractional evolution inclusions without compactness
    • [19] Zhou, Y., Vijayakumar, V., Murugesu, R., Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4 (2015), 507–524.
    • (2015) Evol. Equ. Control Theory , vol.4 , pp. 507-524
    • Zhou, Y.1    Vijayakumar, V.2    Murugesu, R.3
  • 20
    • 1942542248 scopus 로고    scopus 로고
    • Cauchy problem for fractional diffusion equations
    • [20] Eidelman, S.D., Kochubei, A.N., Cauchy problem for fractional diffusion equations. J. Differential Equations 199 (2004), 211–255.
    • (2004) J. Differential Equations , vol.199 , pp. 211-255
    • Eidelman, S.D.1    Kochubei, A.N.2
  • 21
    • 84875739148 scopus 로고    scopus 로고
    • A De Giorgi-Nash type theorem for time fractional diffusion equations
    • [21] Zacher, R., A De Giorgi-Nash type theorem for time fractional diffusion equations. Math. Ann. 356 (2013), 99–146.
    • (2013) Math. Ann. , vol.356 , pp. 99-146
    • Zacher, R.1
  • 22
    • 77957822720 scopus 로고    scopus 로고
    • Initial–boundary-value problems for the generalized multi-term time-fractional diffusion equation
    • [22] Luchko, Y., Initial–boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538–548.
    • (2011) J. Math. Anal. Appl. , vol.374 , pp. 538-548
    • Luchko, Y.1
  • 23
    • 85093881337 scopus 로고    scopus 로고
    • Regularity and unique existence of solution to linear diffusion equation with multiple time-fractional derivatives
    • K. Bredies C. Clason K. Kunisch G. von Winckel Birkhäuser Basel
    • [23] Beckers, S., Yamamoto, M., Regularity and unique existence of solution to linear diffusion equation with multiple time-fractional derivatives. Bredies, K., Clason, C., Kunisch, K., von Winckel, G., (eds.) Control and Optimization with PDE Constraints, 2013, Birkhäuser, Basel, 45–56.
    • (2013) Control and Optimization with PDE Constraints , pp. 45-56
    • Beckers, S.1    Yamamoto, M.2
  • 24
    • 0036680930 scopus 로고    scopus 로고
    • Some probability densities and fundamental solutions of fractional evolution equations
    • [24] El-Borai, M.M., Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14 (2002), 433–440.
    • (2002) Chaos Solitons Fractals , vol.14 , pp. 433-440
    • El-Borai, M.M.1
  • 25
    • 80054110209 scopus 로고    scopus 로고
    • Abstract fractional Cauchy problems with almost sectorial operators
    • [25] Wang, R., Chen, D., Xiao, T., Abstract fractional Cauchy problems with almost sectorial operators. J. Differential Equations 252 (2012), 202–235.
    • (2012) J. Differential Equations , vol.252 , pp. 202-235
    • Wang, R.1    Chen, D.2    Xiao, T.3
  • 26
    • 84883049803 scopus 로고    scopus 로고
    • Hölder continuous solutions for fractional differential equations and maximal regularity
    • [26] Ponce, R., Hölder continuous solutions for fractional differential equations and maximal regularity. J. Differential Equations 255 (2013), 3284–3304.
    • (2013) J. Differential Equations , vol.255 , pp. 3284-3304
    • Ponce, R.1
  • 27
    • 84922779788 scopus 로고    scopus 로고
    • A note on fractional spaces generated by the positive operator with periodic conditions and applications
    • [27] Ashyralyev, A., Tetikoglu, F., A note on fractional spaces generated by the positive operator with periodic conditions and applications. Bound. Value Probl., 2015(31), 2015, 17.
    • (2015) Bound. Value Probl. , vol.2015 , Issue.31 , pp. 17
    • Ashyralyev, A.1    Tetikoglu, F.2
  • 28
    • 61849135626 scopus 로고    scopus 로고
    • Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks
    • [28] Han, B., Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks. SIAM J. Math. Anal. 40 (2008), 70–102.
    • (2008) SIAM J. Math. Anal. , vol.40 , pp. 70-102
    • Han, B.1
  • 29
    • 34248589429 scopus 로고    scopus 로고
    • On the Cauchy–Dirichlet problem in the half space for parabolic SPDEs in weighted Hölder spaces
    • [29] Mikulevicius, R., Pragarauskas, H., Sonnadara, N., On the Cauchy–Dirichlet problem in the half space for parabolic SPDEs in weighted Hölder spaces. Acta Appl. Math. 97 (2007), 129–149.
    • (2007) Acta Appl. Math. , vol.97 , pp. 129-149
    • Mikulevicius, R.1    Pragarauskas, H.2    Sonnadara, N.3
  • 30
    • 77957689548 scopus 로고    scopus 로고
    • Abstract Parabolic Evolution Equations and their Applications
    • Springer-Verlag Berlin, Heidelberg
    • [30] Yagi, A., Abstract Parabolic Evolution Equations and their Applications. 2010, Springer-Verlag, Berlin, Heidelberg.
    • (2010)
    • Yagi, A.1
  • 31
    • 0003796630 scopus 로고
    • Sobolev Spaces
    • Acadamic Press New York
    • [31] Adams, R.A., Sobolev Spaces. 1975, Acadamic Press, New York.
    • (1975)
    • Adams, R.A.1
  • 32
    • 85013054090 scopus 로고    scopus 로고
    • Basic Theory of Fractional Differential Equations
    • World Scientific Singapore
    • [32] Zhou, Y., Basic Theory of Fractional Differential Equations. 2014, World Scientific, Singapore.
    • (2014)
    • Zhou, Y.1
  • 33
    • 0003686033 scopus 로고
    • Semigroup of linear operators and applications to partial differential equations
    • Springer-Verlag New York
    • [33] Pazy, A., Semigroup of linear operators and applications to partial differential equations. Applied Mathematical Sciences, Vol. 44, 1983, Springer-Verlag, New York.
    • (1983) Applied Mathematical Sciences, Vol. 44
    • Pazy, A.1
  • 34
    • 77955515765 scopus 로고    scopus 로고
    • Nonlocal Cauchy problem for fractional evolution equations
    • [34] Zhou, Y., Jiao, F., Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. RWA 11 (2010), 4465–4475.
    • (2010) Nonlinear Anal. RWA , vol.11 , pp. 4465-4475
    • Zhou, Y.1    Jiao, F.2
  • 35
    • 74149093181 scopus 로고    scopus 로고
    • Existence of mild solutions for fractional neutral evolution equations
    • [35] Zhou, Y., Jiao, F., Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59 (2010), 1063–1077.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1063-1077
    • Zhou, Y.1    Jiao, F.2
  • 36
    • 77958009389 scopus 로고    scopus 로고
    • A class of fractional evolution equations and optimal controls
    • [36] Wang, J., Zhou, Y., A class of fractional evolution equations and optimal controls. Nonlinear Anal. RWA 12 (2011), 262–272.
    • (2011) Nonlinear Anal. RWA , vol.12 , pp. 262-272
    • Wang, J.1    Zhou, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.