-
1
-
-
33847309315
-
Theory and Applications of Fractional Differential Equations
-
Elsevier Amsterdam
-
[1] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations. 2006, Elsevier, Amsterdam.
-
(2006)
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
2
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
[2] Metzler, R., Klafter, J., The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
3
-
-
0034032484
-
Application of a fractional advection–dispersion equation
-
[3] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., Application of a fractional advection–dispersion equation. Water Resour. Res. 36 (2000), 1403–1412.
-
(2000)
Water Resour. Res.
, vol.36
, pp. 1403-1412
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
4
-
-
0034113992
-
The fractional-order governing equation of Lévy motion
-
[4] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., The fractional-order governing equation of Lévy motion. Water Resour. Res. 36 (2000), 1413–1423.
-
(2000)
Water Resour. Res.
, vol.36
, pp. 1413-1423
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
5
-
-
0141496655
-
Fractional evolution equations in Banach spaces
-
(Thesis (Dr.)) Technische Universiteit Eindhoven The Netherlands. ProQuest LLC, Ann Arbor, MI
-
[5] Bajlekova, E.G., Fractional evolution equations in Banach spaces. (Thesis (Dr.)), 2001, Technische Universiteit Eindhoven, The Netherlands. ProQuest LLC, Ann Arbor, MI, 113.
-
(2001)
, pp. 113
-
-
Bajlekova, E.G.1
-
6
-
-
0002745423
-
A fractional diffusion equation to decribe Lévy flights
-
[6] Chaves, A.S., A fractional diffusion equation to decribe Lévy flights. Phys. Lett. A 239 (1998), 13–16.
-
(1998)
Phys. Lett. A
, vol.239
, pp. 13-16
-
-
Chaves, A.S.1
-
7
-
-
85015138028
-
Global smooth solutions to a fourth-order quasilinear fractional evolution equation
-
Birkhauser Basel
-
[7] Clement, P., Zacher, R., Global smooth solutions to a fourth-order quasilinear fractional evolution equation. Functional Analysis and Evolution Equations, 2008, Birkhauser, Basel, 131–146.
-
(2008)
Functional Analysis and Evolution Equations
, pp. 131-146
-
-
Clement, P.1
Zacher, R.2
-
9
-
-
84953814539
-
Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space–time-dependent coefficients
-
[9] Magdziarz, M., Zorawik, T., Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space–time-dependent coefficients. Proc. Amer. Math. Soc., 2015.
-
(2015)
Proc. Amer. Math. Soc.
-
-
Magdziarz, M.1
Zorawik, T.2
-
10
-
-
77950869887
-
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation
-
[10] Caffarelli, L., Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. 171 (2010), 1903–1930.
-
(2010)
Ann. of Math.
, vol.171
, pp. 1903-1930
-
-
Caffarelli, L.1
Vasseur, A.2
-
11
-
-
84928954910
-
A novel high order space–time spectral method for the time fractional Fokker–Planck equation
-
[11] Zheng, M., Liu, F., Turner, I., et al. A novel high order space–time spectral method for the time fractional Fokker–Planck equation. SIAM J. Sci. Comput. 37 (2015), A701–A724.
-
(2015)
SIAM J. Sci. Comput.
, vol.37
, pp. A701-A724
-
-
Zheng, M.1
Liu, F.2
Turner, I.3
-
12
-
-
84940689072
-
Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives
-
[12] Liu, Z., Li, X., Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control Optim. 53 (2015), 1920–1933.
-
(2015)
SIAM J. Control Optim.
, vol.53
, pp. 1920-1933
-
-
Liu, Z.1
Li, X.2
-
13
-
-
56549085438
-
Maximum principle for the generalized time-fractional diffusion equation
-
[13] Luchko, Y., Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351 (2009), 218–223.
-
(2009)
J. Math. Anal. Appl.
, vol.351
, pp. 218-223
-
-
Luchko, Y.1
-
14
-
-
76449091249
-
Some uniqueness and existence results for the initial–boundary value problems for the generalized time-fractional diffusion equation
-
[14] Luchko, Y., Some uniqueness and existence results for the initial–boundary value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59 (2010), 1766–1772.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1766-1772
-
-
Luchko, Y.1
-
15
-
-
79956068443
-
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
-
[15] Sakamoto, K., Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011), 426–447.
-
(2011)
J. Math. Anal. Appl.
, vol.382
, pp. 426-447
-
-
Sakamoto, K.1
Yamamoto, M.2
-
16
-
-
84924954118
-
Maximum principle for certain generalized time and space fractional diffusion equations
-
[16] Alsaedi, A., Ahmad, B., Kirane, M., Maximum principle for certain generalized time and space fractional diffusion equations. Quart. Appl. Math. 73 (2015), 163–175.
-
(2015)
Quart. Appl. Math.
, vol.73
, pp. 163-175
-
-
Alsaedi, A.1
Ahmad, B.2
Kirane, M.3
-
17
-
-
84893747471
-
Existence of mild solutions for fractional evolution equations
-
[17] Zhou, Y., Zhang, L., Shen, X.H., Existence of mild solutions for fractional evolution equations. J. Integral Equations Appl. 25 (2013), 557–586.
-
(2013)
J. Integral Equations Appl.
, vol.25
, pp. 557-586
-
-
Zhou, Y.1
Zhang, L.2
Shen, X.H.3
-
18
-
-
84885045311
-
Abstract Cauchy problem for fractional functional differential equations
-
[18] Zhou, Y., Jiao, F., Pečarić, J., Abstract Cauchy problem for fractional functional differential equations. Topol. Methods Nonlinear Anal. 42 (2013), 119–136.
-
(2013)
Topol. Methods Nonlinear Anal.
, vol.42
, pp. 119-136
-
-
Zhou, Y.1
Jiao, F.2
Pečarić, J.3
-
19
-
-
84957558534
-
Controllability for fractional evolution inclusions without compactness
-
[19] Zhou, Y., Vijayakumar, V., Murugesu, R., Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4 (2015), 507–524.
-
(2015)
Evol. Equ. Control Theory
, vol.4
, pp. 507-524
-
-
Zhou, Y.1
Vijayakumar, V.2
Murugesu, R.3
-
20
-
-
1942542248
-
Cauchy problem for fractional diffusion equations
-
[20] Eidelman, S.D., Kochubei, A.N., Cauchy problem for fractional diffusion equations. J. Differential Equations 199 (2004), 211–255.
-
(2004)
J. Differential Equations
, vol.199
, pp. 211-255
-
-
Eidelman, S.D.1
Kochubei, A.N.2
-
21
-
-
84875739148
-
A De Giorgi-Nash type theorem for time fractional diffusion equations
-
[21] Zacher, R., A De Giorgi-Nash type theorem for time fractional diffusion equations. Math. Ann. 356 (2013), 99–146.
-
(2013)
Math. Ann.
, vol.356
, pp. 99-146
-
-
Zacher, R.1
-
22
-
-
77957822720
-
Initial–boundary-value problems for the generalized multi-term time-fractional diffusion equation
-
[22] Luchko, Y., Initial–boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538–548.
-
(2011)
J. Math. Anal. Appl.
, vol.374
, pp. 538-548
-
-
Luchko, Y.1
-
23
-
-
85093881337
-
Regularity and unique existence of solution to linear diffusion equation with multiple time-fractional derivatives
-
K. Bredies C. Clason K. Kunisch G. von Winckel Birkhäuser Basel
-
[23] Beckers, S., Yamamoto, M., Regularity and unique existence of solution to linear diffusion equation with multiple time-fractional derivatives. Bredies, K., Clason, C., Kunisch, K., von Winckel, G., (eds.) Control and Optimization with PDE Constraints, 2013, Birkhäuser, Basel, 45–56.
-
(2013)
Control and Optimization with PDE Constraints
, pp. 45-56
-
-
Beckers, S.1
Yamamoto, M.2
-
24
-
-
0036680930
-
Some probability densities and fundamental solutions of fractional evolution equations
-
[24] El-Borai, M.M., Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14 (2002), 433–440.
-
(2002)
Chaos Solitons Fractals
, vol.14
, pp. 433-440
-
-
El-Borai, M.M.1
-
25
-
-
80054110209
-
Abstract fractional Cauchy problems with almost sectorial operators
-
[25] Wang, R., Chen, D., Xiao, T., Abstract fractional Cauchy problems with almost sectorial operators. J. Differential Equations 252 (2012), 202–235.
-
(2012)
J. Differential Equations
, vol.252
, pp. 202-235
-
-
Wang, R.1
Chen, D.2
Xiao, T.3
-
26
-
-
84883049803
-
Hölder continuous solutions for fractional differential equations and maximal regularity
-
[26] Ponce, R., Hölder continuous solutions for fractional differential equations and maximal regularity. J. Differential Equations 255 (2013), 3284–3304.
-
(2013)
J. Differential Equations
, vol.255
, pp. 3284-3304
-
-
Ponce, R.1
-
27
-
-
84922779788
-
A note on fractional spaces generated by the positive operator with periodic conditions and applications
-
[27] Ashyralyev, A., Tetikoglu, F., A note on fractional spaces generated by the positive operator with periodic conditions and applications. Bound. Value Probl., 2015(31), 2015, 17.
-
(2015)
Bound. Value Probl.
, vol.2015
, Issue.31
, pp. 17
-
-
Ashyralyev, A.1
Tetikoglu, F.2
-
28
-
-
61849135626
-
Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks
-
[28] Han, B., Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks. SIAM J. Math. Anal. 40 (2008), 70–102.
-
(2008)
SIAM J. Math. Anal.
, vol.40
, pp. 70-102
-
-
Han, B.1
-
29
-
-
34248589429
-
On the Cauchy–Dirichlet problem in the half space for parabolic SPDEs in weighted Hölder spaces
-
[29] Mikulevicius, R., Pragarauskas, H., Sonnadara, N., On the Cauchy–Dirichlet problem in the half space for parabolic SPDEs in weighted Hölder spaces. Acta Appl. Math. 97 (2007), 129–149.
-
(2007)
Acta Appl. Math.
, vol.97
, pp. 129-149
-
-
Mikulevicius, R.1
Pragarauskas, H.2
Sonnadara, N.3
-
30
-
-
77957689548
-
Abstract Parabolic Evolution Equations and their Applications
-
Springer-Verlag Berlin, Heidelberg
-
[30] Yagi, A., Abstract Parabolic Evolution Equations and their Applications. 2010, Springer-Verlag, Berlin, Heidelberg.
-
(2010)
-
-
Yagi, A.1
-
31
-
-
0003796630
-
Sobolev Spaces
-
Acadamic Press New York
-
[31] Adams, R.A., Sobolev Spaces. 1975, Acadamic Press, New York.
-
(1975)
-
-
Adams, R.A.1
-
32
-
-
85013054090
-
Basic Theory of Fractional Differential Equations
-
World Scientific Singapore
-
[32] Zhou, Y., Basic Theory of Fractional Differential Equations. 2014, World Scientific, Singapore.
-
(2014)
-
-
Zhou, Y.1
-
33
-
-
0003686033
-
Semigroup of linear operators and applications to partial differential equations
-
Springer-Verlag New York
-
[33] Pazy, A., Semigroup of linear operators and applications to partial differential equations. Applied Mathematical Sciences, Vol. 44, 1983, Springer-Verlag, New York.
-
(1983)
Applied Mathematical Sciences, Vol. 44
-
-
Pazy, A.1
-
34
-
-
77955515765
-
Nonlocal Cauchy problem for fractional evolution equations
-
[34] Zhou, Y., Jiao, F., Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. RWA 11 (2010), 4465–4475.
-
(2010)
Nonlinear Anal. RWA
, vol.11
, pp. 4465-4475
-
-
Zhou, Y.1
Jiao, F.2
-
35
-
-
74149093181
-
Existence of mild solutions for fractional neutral evolution equations
-
[35] Zhou, Y., Jiao, F., Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59 (2010), 1063–1077.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1063-1077
-
-
Zhou, Y.1
Jiao, F.2
-
36
-
-
77958009389
-
A class of fractional evolution equations and optimal controls
-
[36] Wang, J., Zhou, Y., A class of fractional evolution equations and optimal controls. Nonlinear Anal. RWA 12 (2011), 262–272.
-
(2011)
Nonlinear Anal. RWA
, vol.12
, pp. 262-272
-
-
Wang, J.1
Zhou, Y.2
|