메뉴 건너뛰기




Volumn 255, Issue 10, 2013, Pages 3284-3304

Hölder continuous solutions for fractional differential equations and maximal regularity

Author keywords

Fractional differential equations; Integro differential equations; Maximal regularity; Operator valued Fourier multipliers

Indexed keywords


EID: 84883049803     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2013.07.035     Document Type: Article
Times cited : (51)

References (41)
  • 2
    • 0007388536 scopus 로고
    • Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory
    • Birkhäuser, Basel, Boston, Berlin
    • Amann H. Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory. Monogr. Math. 1995, vol. 89. Birkhäuser, Basel, Boston, Berlin.
    • (1995) Monogr. Math. , vol.89
    • Amann, H.1
  • 3
    • 0001871487 scopus 로고    scopus 로고
    • Operator-valued Fourier multipliers, vector-valued Besov spaces and applications
    • Amann H. Operator-valued Fourier multipliers, vector-valued Besov spaces and applications. Math. Nachr. 1997, 186:5-56.
    • (1997) Math. Nachr. , vol.186 , pp. 5-56
    • Amann, H.1
  • 4
    • 1842479599 scopus 로고    scopus 로고
    • Fourier multipliers for Hölder continuous functions and maximal regularity
    • Arendt W., Batty C., Bu S. Fourier multipliers for Hölder continuous functions and maximal regularity. Studia Math. 2004, 160:23-51.
    • (2004) Studia Math. , vol.160 , pp. 23-51
    • Arendt, W.1    Batty, C.2    Bu, S.3
  • 5
    • 0036628277 scopus 로고    scopus 로고
    • The operator-valued Marcinkiewicz multiplier theorem and maximal regularity
    • Arendt W., Bu S. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 2002, 240:311-343.
    • (2002) Math. Z. , vol.240 , pp. 311-343
    • Arendt, W.1    Bu, S.2
  • 6
    • 64249092279 scopus 로고    scopus 로고
    • Some existence results for fractional integro-differential equations with nonlinear conditions
    • Ahmad B., Sivasundaram S. Some existence results for fractional integro-differential equations with nonlinear conditions. Commun. Appl. Anal. 2008, 12(2):107-112.
    • (2008) Commun. Appl. Anal. , vol.12 , Issue.2 , pp. 107-112
    • Ahmad, B.1    Sivasundaram, S.2
  • 7
    • 2442662590 scopus 로고    scopus 로고
    • Operator-valued Fourier multiplier on periodic Besov spaces and applications
    • Arendt W., Bu S. Operator-valued Fourier multiplier on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. (2) 2004, 47:15-33.
    • (2004) Proc. Edinb. Math. Soc. (2) , vol.47 , pp. 15-33
    • Arendt, W.1    Bu, S.2
  • 8
    • 0003307607 scopus 로고    scopus 로고
    • Vector-Valued Laplace Transforms and Cauchy Problems
    • Birkhäuser, Basel
    • Arendt W., Batty C., Hieber M., Neubrander F. Vector-Valued Laplace Transforms and Cauchy Problems. Monogr. Math. 2001, vol. 96. Birkhäuser, Basel.
    • (2001) Monogr. Math. , vol.96
    • Arendt, W.1    Batty, C.2    Hieber, M.3    Neubrander, F.4
  • 10
    • 77953520213 scopus 로고    scopus 로고
    • Well-posedness of equations with fractional derivative
    • Bu S. Well-posedness of equations with fractional derivative. Acta Math. Sin. (Engl. Ser.) 2010, 26(7):1223-1232.
    • (2010) Acta Math. Sin. (Engl. Ser.) , vol.26 , Issue.7 , pp. 1223-1232
    • Bu, S.1
  • 11
    • 80053263582 scopus 로고    scopus 로고
    • Well-posedness of fractional differential equations on vector-valued function spaces
    • Bu S. Well-posedness of fractional differential equations on vector-valued function spaces. Integral Equations Operator Theory 2011, 71:259-274.
    • (2011) Integral Equations Operator Theory , vol.71 , pp. 259-274
    • Bu, S.1
  • 12
    • 79953875465 scopus 로고    scopus 로고
    • Hölder continuous solutions for second order integro-differential equations in Banach spaces
    • Bu S. Hölder continuous solutions for second order integro-differential equations in Banach spaces. Acta Math. Sci. Ser. B 2011, 31(3):765-777.
    • (2011) Acta Math. Sci. Ser. B , vol.31 , Issue.3 , pp. 765-777
    • Bu, S.1
  • 13
    • 83255161937 scopus 로고    scopus 로고
    • Well-posedness of equations with fractional derivative via the method of Sum
    • Bu S. Well-posedness of equations with fractional derivative via the method of Sum. Acta Math. Sin. (Engl. Ser.) 2012, 28(1):37-44.
    • (2012) Acta Math. Sin. (Engl. Ser.) , vol.28 , Issue.1 , pp. 37-44
    • Bu, S.1
  • 14
    • 0002217735 scopus 로고
    • An access to fractional differentiation via fractional difference quotients
    • Springer, Berlin
    • Butzer P., Westphal U. An access to fractional differentiation via fractional difference quotients. Lecture Notes in Math. 1975, vol. 457:116-145. Springer, Berlin.
    • (1975) Lecture Notes in Math. , vol.457 , pp. 116-145
    • Butzer, P.1    Westphal, U.2
  • 15
    • 27844477793 scopus 로고    scopus 로고
    • p-maximal regularity for second order Cauchy problems
    • p-maximal regularity for second order Cauchy problems. Math. Z. 2005, 251(4):751-781.
    • (2005) Math. Z. , vol.251 , Issue.4 , pp. 751-781
    • Chill, R.1    Srivastava, S.2
  • 16
    • 24844472114 scopus 로고    scopus 로고
    • Hölder regularity for a linear fractional evolution equation
    • Birkhäuser, Basel, Topics in Nonlinear Analysis
    • Clément Ph., Gripenberg G., Londen S. Hölder regularity for a linear fractional evolution equation. Progr. Nonlinear Differential Equations Appl. 1999, vol. 35:69-82. Birkhäuser, Basel.
    • (1999) Progr. Nonlinear Differential Equations Appl. , vol.35 , pp. 69-82
    • Clément, P.1    Gripenberg, G.2    Londen, S.3
  • 17
    • 0742286748 scopus 로고    scopus 로고
    • Quasilinear evolutionary equations and continuous interpolation spaces
    • Clément Ph., Londen S., Simonett G. Quasilinear evolutionary equations and continuous interpolation spaces. J. Differential Equations 2004, 196(2):418-447.
    • (2004) J. Differential Equations , vol.196 , Issue.2 , pp. 418-447
    • Clément, P.1    Londen, S.2    Simonett, G.3
  • 18
    • 67651225425 scopus 로고    scopus 로고
    • Well posedness for a class of flexible structure in Hölder spaces
    • Article ID 358329
    • Cuevas C., Lizama C. Well posedness for a class of flexible structure in Hölder spaces. Math. Probl. Eng. 2009, 2009. Article ID 358329, 13 pp. 10.1155/2009/358329.
    • (2009) Math. Probl. Eng. , vol.2009 , pp. 13
    • Cuevas, C.1    Lizama, C.2
  • 19
    • 0242287337 scopus 로고    scopus 로고
    • R-boundedness, Fourier multipliers and problems of elliptic and parabolic type
    • Denk R., Hieber M., Prüss J. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 2003, 166(788).
    • (2003) Mem. Amer. Math. Soc. , vol.166 , Issue.788
    • Denk, R.1    Hieber, M.2    Prüss, J.3
  • 20
    • 1942542248 scopus 로고    scopus 로고
    • Cauchy problem for fractional diffusion equations
    • Eidelman S., Kochubei A. Cauchy problem for fractional diffusion equations. J. Differential Equations 2004, 199(2):211-255.
    • (2004) J. Differential Equations , vol.199 , Issue.2 , pp. 211-255
    • Eidelman, S.1    Kochubei, A.2
  • 21
    • 3242785690 scopus 로고    scopus 로고
    • Continuation and maximal regularity of fractional-order evolution equation
    • El-Sayed A., Herzallah M. Continuation and maximal regularity of fractional-order evolution equation. J. Math. Anal. Appl. 2004, 296(1):340-350.
    • (2004) J. Math. Anal. Appl. , vol.296 , Issue.1 , pp. 340-350
    • El-Sayed, A.1    Herzallah, M.2
  • 22
    • 77954547485 scopus 로고    scopus 로고
    • Continuation and maximal regularity of fractional-order evolutionary integral equation
    • El-Sayed A., Herzallah M. Continuation and maximal regularity of fractional-order evolutionary integral equation. Int. J. Evol. Equ. 2005, 1(2):179-190.
    • (2005) Int. J. Evol. Equ. , vol.1 , Issue.2 , pp. 179-190
    • El-Sayed, A.1    Herzallah, M.2
  • 23
    • 77954560787 scopus 로고    scopus 로고
    • Continuation and maximal regularity of an arbitrary (fractional) order evolutionary integro-differential equation
    • El-Sayed A., Herzallah M. Continuation and maximal regularity of an arbitrary (fractional) order evolutionary integro-differential equation. Appl. Anal. 2005, 84(11):1151-1164.
    • (2005) Appl. Anal. , vol.84 , Issue.11 , pp. 1151-1164
    • El-Sayed, A.1    Herzallah, M.2
  • 24
    • 1842540617 scopus 로고    scopus 로고
    • Degenerate Differential Equations in Banach Spaces
    • Dekker, New York, Basel, Hong Kong
    • Favini A., Yagi A. Degenerate Differential Equations in Banach Spaces. Pure Appl. Math. 1999, vol. 215. Dekker, New York, Basel, Hong Kong.
    • (1999) Pure Appl. Math. , vol.215
    • Favini, A.1    Yagi, A.2
  • 25
    • 33749339663 scopus 로고    scopus 로고
    • The Functional Calculus for Sectorial Operators
    • Birkäuser Verlag, Basel
    • Haase M. The Functional Calculus for Sectorial Operators. Oper. Theory Adv. Appl. 2006, vol. 169. Birkäuser Verlag, Basel.
    • (2006) Oper. Theory Adv. Appl. , vol.169
    • Haase, M.1
  • 26
    • 84883053009 scopus 로고    scopus 로고
    • Applications of fractional calculus in physics, R. Hilfer (Ed.), World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
    • R. Hilfer, Applications of fractional calculus in physics, R. Hilfer (Ed.), World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
    • Hilfer, R.1
  • 27
    • 84883054773 scopus 로고    scopus 로고
    • R-boundedness and multiplier theorems, Helsinki University of Technology Institute of Mathematics Research Reports, 2001.
    • T. Hytönen, R-boundedness and multiplier theorems, Helsinki University of Technology Institute of Mathematics Research Reports, 2001.
    • Hytönen, T.1
  • 28
    • 3042637814 scopus 로고    scopus 로고
    • Fourier multipliers and integro-differential equations in Banach spaces
    • Keyantuo V., Lizama C. Fourier multipliers and integro-differential equations in Banach spaces. J. London Math. Soc. 2004, 69(3):737-750.
    • (2004) J. London Math. Soc. , vol.69 , Issue.3 , pp. 737-750
    • Keyantuo, V.1    Lizama, C.2
  • 29
    • 79952093526 scopus 로고    scopus 로고
    • A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications
    • Keyantuo V., Lizama C. A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications. Math. Nachr. 2011, 284(4):494-506.
    • (2011) Math. Nachr. , vol.284 , Issue.4 , pp. 494-506
    • Keyantuo, V.1    Lizama, C.2
  • 30
    • 33748592817 scopus 로고    scopus 로고
    • Hölder continuous solutions for integro-differential equations and maximal regularity
    • Keyantuo V., Lizama C. Hölder continuous solutions for integro-differential equations and maximal regularity. J. Differential Equations 2006, 230:634-660.
    • (2006) J. Differential Equations , vol.230 , pp. 634-660
    • Keyantuo, V.1    Lizama, C.2
  • 31
    • 77956684069 scopus 로고    scopus 로고
    • Theory and Applications of Fractional Differential Equations
    • Elsevier Science B.V., Amsterdam
    • Kilbas A., Srivastava H., Trujillo J. Theory and Applications of Fractional Differential Equations. North-Holland Math. Stud. 2006, vol. 204. Elsevier Science B.V., Amsterdam.
    • (2006) North-Holland Math. Stud. , vol.204
    • Kilbas, A.1    Srivastava, H.2    Trujillo, J.3
  • 32
    • 77955845596 scopus 로고    scopus 로고
    • On fractional powers of generators of fractional resolvent families
    • Li M., Chen C., Li F. On fractional powers of generators of fractional resolvent families. J. Funct. Anal. 2010, 259(10):2702-2726.
    • (2010) J. Funct. Anal. , vol.259 , Issue.10 , pp. 2702-2726
    • Li, M.1    Chen, C.2    Li, F.3
  • 33
    • 79959775820 scopus 로고    scopus 로고
    • Periodic solutions of fractional differential equations with delay
    • Lizama C., Poblete V. Periodic solutions of fractional differential equations with delay. J. Evol. Equ. 2011, 11:57-70.
    • (2011) J. Evol. Equ. , vol.11 , pp. 57-70
    • Lizama, C.1    Poblete, V.2
  • 35
    • 0037610350 scopus 로고    scopus 로고
    • The Theory of Fractional Powers of Operators
    • Elsevier, Amsterdam, London, New York
    • Martinez C., Sanz M. The Theory of Fractional Powers of Operators. North-Holland Math. Stud. 2001, vol. 187. Elsevier, Amsterdam, London, New York.
    • (2001) North-Holland Math. Stud. , vol.187
    • Martinez, C.1    Sanz, M.2
  • 37
    • 0022492943 scopus 로고
    • The realization of the generalized transfer equation in a medium with fractal geometry
    • Nigmatullin R. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 1986, 133:230-425.
    • (1986) Phys. Stat. Sol. B , vol.133 , pp. 230-425
    • Nigmatullin, R.1
  • 38
    • 0008849603 scopus 로고
    • On heat conduction in materials with memory
    • Nunziato J. On heat conduction in materials with memory. Quart. Appl. Math. 1971, 29:187-304.
    • (1971) Quart. Appl. Math. , vol.29 , pp. 187-304
    • Nunziato, J.1
  • 39
    • 55049107032 scopus 로고    scopus 로고
    • Maximal regularity of second-order equations with delay
    • Poblete V. Maximal regularity of second-order equations with delay. J. Differential Equations 2009, 246:261-276.
    • (2009) J. Differential Equations , vol.246 , pp. 261-276
    • Poblete, V.1
  • 40
    • 0003334487 scopus 로고
    • Evolutionary Integral Equations and Applications
    • Birkhäuser Verlag
    • Prüss J. Evolutionary Integral Equations and Applications. Monogr. Math. 1993, vol. 87. Birkhäuser Verlag.
    • (1993) Monogr. Math. , vol.87
    • Prüss, J.1
  • 41
    • 0035629005 scopus 로고    scopus 로고
    • Operator-valued Fourier multiplier theorems and maximal Lp-regularity
    • Weis L. Operator-valued Fourier multiplier theorems and maximal Lp-regularity. Math. Ann. 2001, 319:735-758.
    • (2001) Math. Ann. , vol.319 , pp. 735-758
    • Weis, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.