-
1
-
-
0000492326
-
Learning from noisy examples
-
Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
2
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138-156, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
5
-
-
84867123336
-
Robust classification with adiabatic quantum optimization
-
Vasil Denchev, Nan Ding, Hartmut Neven, and S. V. N. Vishwanathan. Robust classification with adiabatic quantum optimization. In International Conference on Machine Learning (ICML), pages 863-870, 2012.
-
(2012)
International Conference on Machine Learning (ICML)
, pp. 863-870
-
-
Denchev, V.1
Ding, N.2
Neven, H.3
Vishwanathan, S.V.N.4
-
9
-
-
84927972620
-
Making risk minimization tolerant to label noise
-
Aritra Ghosh, Naresh Manwani, and P. S. Sastry. Making risk minimization tolerant to label noise. Neurocomputing, 160:93-107, 2015.
-
(2015)
Neurocomputing
, vol.160
, pp. 93-107
-
-
Ghosh, A.1
Manwani, N.2
Sastry, P.S.3
-
10
-
-
84925605946
-
The entire regularization path for the support vector machine
-
December
-
Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire regularization path for the support vector machine. Journal of Machine Learning Research, 5:1391-1415, December 2004. ISSN 1532-4435.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
11
-
-
0027188175
-
Efficient noise-tolerant learning from statistical queries
-
November
-
Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 5(6):392-401, November 1998.
-
(1998)
Journal of the ACM
, vol.5
, Issue.6
, pp. 392-401
-
-
Kearns, M.1
-
12
-
-
83555170269
-
Random classification noise defeats all convex potential boosters
-
Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex potential boosters. Machine Learning, 78(3):287-304, 2010. ISSN 0885-6125.
-
(2010)
Machine Learning
, vol.78
, Issue.3
, pp. 287-304
-
-
Long, P.M.1
Servedio, R.A.2
-
13
-
-
34548080780
-
-
Cambridge University Press, New York, NY, USA, 9780521865715
-
Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719, 9780521865715.
-
(2008)
Introduction to Information Retrieval
-
-
Manning, C.D.1
Raghavan, P.2
Schütze, H.3
-
14
-
-
84890431307
-
Noise tolerance under risk minimization
-
June
-
Naresh Manwani and P. S. Sastry. Noise tolerance under risk minimization. IEEE Transactions on Cybernetics, 43(3):1146-1151, June 2013.
-
(2013)
IEEE Transactions on Cybernetics
, vol.43
, Issue.3
, pp. 1146-1151
-
-
Manwani, N.1
Sastry, P.S.2
-
16
-
-
84898932626
-
Learning with noisy labels
-
Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep D. Ravikumar, and Ambuj Tewari. Learning with noisy labels. In Advances in Neural Information Processing Systems (NIPS), pages 1196-1204, 2013.
-
(2013)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1196-1204
-
-
Natarajan, N.1
Dhillon, I.S.2
Ravikumar, P.D.3
Tewari, A.4
-
19
-
-
79955815221
-
Information, divergence and risk for binary experiments
-
Mar.
-
Mark D Reid and Robert C Williamson. Information, divergence and risk for binary experiments. Journal of Machine Learning Research, 12:731-817, Mar. 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 731-817
-
-
Reid, M.D.1
Williamson, R.C.2
-
24
-
-
77951951390
-
Kernel choice and classifiability for RKHS embeddings of probability distributions
-
Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Gert R. G. Lanckriet, and Bernhard Schölkopf. Kernel choice and classifiability for RKHS embeddings of probability distributions. In Advances in Neural Information Processing Systems (NIPS), 2009.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Gretton, A.3
Lanckriet, G.R.G.4
Schölkopf, B.5
-
25
-
-
70350610827
-
Learning SVMs from sloppily labeled data
-
Springer Berlin Heidelberg
-
Guillaume Stempfel and Liva Ralaivola. Learning SVMs from sloppily labeled data. In Artificial Neural Networks (ICANN), volume 5768, pages 884-893. Springer Berlin Heidelberg, 2009.
-
(2009)
Artificial Neural Networks (ICANN)
, vol.5768
, pp. 884-893
-
-
Stempfel, G.1
Ralaivola, L.2
-
26
-
-
0037076272
-
Diagnosis of multiple cancer types by shrunken centroids of gene expression
-
Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences, 99(10):6567-6572, 2002.
-
(2002)
Proceedings of the National Academy of Sciences
, vol.99
, Issue.10
, pp. 6567-6572
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
|