-
1
-
-
84877773753
-
Graphical models via generalized linear models
-
E. Yang, G. Allen, Z. Liu, and P. K. Ravikumar, "Graphical models via generalized linear models", in Advances in Neural Information Processing Systems, 2012, pp. 1358-1366.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1358-1366
-
-
Yang, E.1
Allen, G.2
Liu, Z.3
Ravikumar, P.K.4
-
2
-
-
0002095306
-
Equivalence and synthesis of causal models
-
P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer, "Equivalence and synthesis of causal models", in Uncertainty in artificial intelligence, vol. 6, 1991, p. 255.
-
(1991)
Uncertainty in Artificial Intelligence
, vol.6
, pp. 255
-
-
Bonissone, P.1
Henrion, M.2
Kanal, L.3
Lemmer, J.4
-
5
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
Springer
-
D. M. Chickering, "Learning Bayesian networks is NP-complete", in Learning from data. Springer, 1996, pp. 121-130.
-
(1996)
Learning from Data
, pp. 121-130
-
-
Chickering, D.M.1
-
6
-
-
84879127873
-
Geometry of the faithfulness assumption in causal inference
-
C. Uhler, G. Raskutti, P. Bühlmann, B. Yu et al., "Geometry of the faithfulness assumption in causal inference", The Annals of Statistics, vol. 41, no. 2, pp. 436-463, 2013.
-
(2013)
The Annals of Statistics
, vol.41
, Issue.2
, pp. 436-463
-
-
Uhler, C.1
Raskutti, G.2
Bühlmann, P.3
Yu, B.4
-
7
-
-
0040606893
-
Testing for overdispersion in Poisson and binomial regression models
-
C. B. Dean, "Testing for overdispersion in Poisson and binomial regression models", Journal of the American Statistical Association, vol. 87, no. 418, pp. 451-457, 1992.
-
(1992)
Journal of the American Statistical Association
, vol.87
, Issue.418
, pp. 451-457
-
-
Dean, C.B.1
-
8
-
-
33745638530
-
How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks
-
T. Zheng, M. J. Salganik, and A. Gelman, "How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks", Journal of the American Statistical Association, vol. 101, no. 474, pp. 409-423, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.474
, pp. 409-423
-
-
Zheng, T.1
Salganik, M.J.2
Gelman, A.3
-
9
-
-
84908277840
-
Identifiability of Gaussian structural equation models with equal error variances
-
J. Peters and P. Bühlmann, "Identifiability of Gaussian structural equation models with equal error variances", Biometrika, p. ast043, 2013.
-
(2013)
Biometrika
, pp. ast043
-
-
Peters, J.1
Bühlmann, P.2
-
10
-
-
33749326177
-
A linear non-Gaussian acyclic model for causal discovery
-
S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, "A linear non-Gaussian acyclic model for causal discovery", The Journal of Machine Learning Research, vol. 7, pp. 2003-2030, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.4
-
12
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
I. Tsamardinos, L. E. Brown, and C. F. Aliferis, "The max-min hill-climbing Bayesian network structure learning algorithm", Machine learning, vol. 65, no. 1, pp. 31-78, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
13
-
-
14344265835
-
HITON: A novel Markov Blanket algorithm for optimal variable selection
-
American Medical Informatics Association
-
C. F. Aliferis, I. Tsamardinos, and A. Statnikov, "HITON: a novel Markov Blanket algorithm for optimal variable selection", in AMIA Annual Symposium Proceedings, vol. 2003. American Medical Informatics Association, 2003, p. 21.
-
(2003)
AMIA Annual Symposium Proceedings
, vol.2003
, pp. 21
-
-
Aliferis, C.F.1
Tsamardinos, I.2
Statnikov, A.3
-
15
-
-
3242756447
-
Towards principled feature selection: Relevancy, filters and wrappers
-
Morgan Kaufmann Publishers: Key West, FL, USA
-
I. Tsamardinos and C. F. Aliferis, "Towards principled feature selection: Relevancy, filters and wrappers", in Proceedings of the ninth international workshop on Artificial Intelligence and Statistics. Morgan Kaufmann Publishers: Key West, FL, USA, 2003.
-
(2003)
Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics
-
-
Tsamardinos, I.1
Aliferis, C.F.2
-
16
-
-
0002219642
-
Learning Bayesian network structure from massive datasets: The sparse candidate algorithm
-
Morgan Kaufmann Publishers Inc.
-
N. Friedman, I. Nachman, and D. Peér, "Learning bayesian network structure from massive datasets: the sparse candidate algorithm", in Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1999, pp. 206-215.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Peér, D.3
-
17
-
-
84965123119
-
-
R package version
-
J. Friedman, T. Hastie, and R. Tibshirani, "glmnet: Lasso and elastic-net regularized generalized linear models", R package version, vol. 1, 2009.
-
(2009)
Glmnet: Lasso and Elastic-net Regularized Generalized Linear Models
, vol.1
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
18
-
-
0042967741
-
Optimal structure identification with greedy search
-
D. M. Chickering, "Optimal structure identification with greedy search", The Journal of Machine Learning Research, vol. 3, pp. 507-554, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
19
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data", Machine learning, vol. 20, no. 3, pp. 197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
|