메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 631-639

Learning large-scale Poisson DAG models based on overdispersion scoring

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; INFORMATION SCIENCE; POLYNOMIAL APPROXIMATION;

EID: 84965123355     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (40)

References (19)
  • 5
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Springer
    • D. M. Chickering, "Learning Bayesian networks is NP-complete", in Learning from data. Springer, 1996, pp. 121-130.
    • (1996) Learning from Data , pp. 121-130
    • Chickering, D.M.1
  • 6
    • 84879127873 scopus 로고    scopus 로고
    • Geometry of the faithfulness assumption in causal inference
    • C. Uhler, G. Raskutti, P. Bühlmann, B. Yu et al., "Geometry of the faithfulness assumption in causal inference", The Annals of Statistics, vol. 41, no. 2, pp. 436-463, 2013.
    • (2013) The Annals of Statistics , vol.41 , Issue.2 , pp. 436-463
    • Uhler, C.1    Raskutti, G.2    Bühlmann, P.3    Yu, B.4
  • 7
    • 0040606893 scopus 로고
    • Testing for overdispersion in Poisson and binomial regression models
    • C. B. Dean, "Testing for overdispersion in Poisson and binomial regression models", Journal of the American Statistical Association, vol. 87, no. 418, pp. 451-457, 1992.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.418 , pp. 451-457
    • Dean, C.B.1
  • 8
    • 33745638530 scopus 로고    scopus 로고
    • How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks
    • T. Zheng, M. J. Salganik, and A. Gelman, "How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks", Journal of the American Statistical Association, vol. 101, no. 474, pp. 409-423, 2006.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.474 , pp. 409-423
    • Zheng, T.1    Salganik, M.J.2    Gelman, A.3
  • 9
    • 84908277840 scopus 로고    scopus 로고
    • Identifiability of Gaussian structural equation models with equal error variances
    • J. Peters and P. Bühlmann, "Identifiability of Gaussian structural equation models with equal error variances", Biometrika, p. ast043, 2013.
    • (2013) Biometrika , pp. ast043
    • Peters, J.1    Bühlmann, P.2
  • 12
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • I. Tsamardinos, L. E. Brown, and C. F. Aliferis, "The max-min hill-climbing Bayesian network structure learning algorithm", Machine learning, vol. 65, no. 1, pp. 31-78, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 13
    • 14344265835 scopus 로고    scopus 로고
    • HITON: A novel Markov Blanket algorithm for optimal variable selection
    • American Medical Informatics Association
    • C. F. Aliferis, I. Tsamardinos, and A. Statnikov, "HITON: a novel Markov Blanket algorithm for optimal variable selection", in AMIA Annual Symposium Proceedings, vol. 2003. American Medical Informatics Association, 2003, p. 21.
    • (2003) AMIA Annual Symposium Proceedings , vol.2003 , pp. 21
    • Aliferis, C.F.1    Tsamardinos, I.2    Statnikov, A.3
  • 18
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D. M. Chickering, "Optimal structure identification with greedy search", The Journal of Machine Learning Research, vol. 3, pp. 507-554, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 19
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data", Machine learning, vol. 20, no. 3, pp. 197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.